
fll~. E[]

Copyright (c) 1986 MISOSYS, Inc., Al1 rights reserved
Mister ED - A PRO-NTO Editor Application Pack

Copyright (c) 1986 MISOSYS, Inc,, All rights reserved
Mister ED - A PRO-NTO Editor Application Padc

Table of Contents

CARDFORM: CARD form facility

DEO: Disk ED1tor ••

DOLOAD: viDeO screen LOAOer

FED: File EOitor •

MEO: Memory EDitor

OOPS: (see TED)

REGENBU: Regenerate BRINGUP/DAT

TED: Text EOitor.

VED: viDeO EDitor

3

11

13

21

29

31

45

Reproduction of this manual in any manner, electronic, mechanical, magnetic,
optical, chemical, or otherwise, without written permission from the
publisher, is prohibited.

Mister ED, Copyright 1986 by MISDSYS, Inc., All rights reserved.

Mister ED is published by MlSOSYS, Inc.

Note: Mister ED requires the PRO-NTO window and application manager.

MISOSYS,Inc.
P.O. Box 239

Sterling, Virginia 22170-0239
703-450-4181

Copyright (c) 1966 MlSOSYS, Inc., All rights reserved
CAA0FO!IM - CARO for111 popu lator

CARDFORM Appl1cation

The CARDf0RM application is an adjunct to the CARD filer and notepad
application. Although CARD was designed to provide a free-format text space
of up to 480 characters of textual data, some peopl have been using it as a
small file base storing fixed-format data (i.e. that which can be entered
into a ~form". Thus, we have had a few requests for a facility which can be
used to populate a CARD file with a designated "form". CARDF0RM provides such
a capability. On the other hand, CAROFORM does not embellish CARD with any
new facilities such as automatically skipping over the "fields" designated by
the "form".

It is extremely important that you do NOT invoke CAR0F0RM while you are
actively in the CARD application. If you are currently operating CARD and
wish to add a few more records using the fixed format, you must exit CARD and
then invoke CARDF0RM. Likewise, you probably should not invoke CARD from
CARDf0RM, Although the specific reasons for these restraints don't really
need to be discussed, you may be interested in knowing that the limitation is
based on the problems which deve1op when a file is opened for reading and
writing simultaneously by more than one application.

When you invoke the CARDF0RM applkation, it wi 11 request PR0-NT0 to
open a window. A sample CARDF0RM screen appears as fol lows:

+--+
!Name:
!Address:
!Telephone:
I Product:
I
I
I
I
I
I
I I
I I
1--I
l[CARDF0RM] (02/17/86 06:05:35] (12]1
I Add forms I
I CARDFORM: Copyright 1986 MIS0SYS, Inc. I
+--+

When the window is opened, CARDF0RM will search all disk drives for a file
named CARD/OAT. When a CARD/DAT file is found, it will be accessed. CAR0F0RM
wi 11 then scan through the data file unti 1 it locates a record with the JD
field of "CARDF0RM" .If a window cannot be opened, a short beep wi 11 sound
from your computer's internal speaker and CARD will terminate. This happens
when you have exceeded the maximum nunt.er of windows that can be open at one
time. That's a rare instance, especially stnce you probably just exited CARD.
If no file can be found identified as CARD/DAT, you will be notified of the

Mister ED Application Pack
CARDFORM - 1

Copyright (c) 1986 NISOSYS. Inc., All rights reserved
CAROl'ORM * tAAO form populator

error and CARDFORM wi 11 terminate. l f a record with the 10 -0f "CAROl'ORM''
cannot be found, you wi 11 be notified of that condition by the displilcy of the
message,

CAROFORM mask Mt found l

This essentially means that you have to exit CAROf'O{!M and invoke CARD to
prepare such a form (see Creating ii CAROFORM record). Otherwise, the record
which contains the "CARDFORM" form will be displayed and the CAROFORM command
which is available. When CAROFORM is waiting for a command entry, the cursor
which is at the beginning of the commands list will be blinking (this cursor
is shown as an underline "_" in the preceding illustration].

There is only a single COl!llland which permits you to populate the
CARD/DAT file with the displayed form, The command is invoked by depressing
the letter key noted by the first letter of the command word (the letter "A"
which appears capitalized). This may be entered in either upper ·or lower
case.

Creating a CARO form record.

It is easy to create a form to be used by CARDFORM. Just invoke CARD,
then "ADO" a record. Using the edit facility, compose your form in the text
window of the added card. When you have completed and saved your edits, just
invoke the "ID" command and identify the record as "CARDFORM". That's al 1
there is to it.

ADD a form record

When you wish to add one or more records to your card file and also
initialize the added record(s) with the cardform, specify this action by
depressing the <A> key. You will be asked how many records you wish added by
the prompt,

Add how many?

You may enter up to a three-digit decimal number. Terminate your entry with
the <ENTER> key. After you have made your entry, CARDFORM will automatically
add that many records and fill each record with the form. The DATE and TIME
fields are automatically handled by CARDFORM which fills all added records
with the current date and time. The IO field of the added records is left
blank. If you decide that you do not want to add any records, just depress
<BREAK>. CAROFORM will abort the addition and then await another command.

Please note that there is no way to go back to an existing record and
merge in the form. CARDFORM can only insert the form into new records which
it adds to the data file.

Mister ED Application Pack
CARDFORM - 2

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
D£D - 01sk Editor

.DEi) Application

The Disk EDitor {OED) application will allow you to edit a diskette on
any DOS supported disk drive on a sector basis with full-screen editing. A
sector is considered to be a 256-byte disk sector. The advantage of full
screen editing is that you can make as many changes to a work copy of a sec­
tor without actually affecting the diskette until such time as you •save"
,YOUr changes. DOS supported hard drives can be edited as easily as floppy
diskettes.

Editing display screen

At all times during the editing of a sector, the work buffer for the
selected sector will be displayed per the following screen layout:

. 0123456789ABCDEF 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
=-===-==-=~-=-==-=--=---=--=--====---~=---=-==---=----=-==------=s==-=-==~=--
I .*'>a.!.l •• >1 •••
I •• >1 >1 .. 1.S>
I f a .. { .. .
I .• CARD/DAT •• CARD
I FORM mask not fo
I und •.• Add how ma
I ny? .[]
I t
I J [
I
I
I

Add forms. CARDF
ORr(; Copyright 1
986 MISOSYS, Inc

I
I
I
I

<00> 00 2A 27 3E 61 EF 21 00 25 06 05 3E 7C EF cg 05
<10> 06 03 3E 7C EF El 06 OA 3E 7C EF C9 21 00 24 3E
<20> 7C EF C9 01000018 F7 FE 61 D8 FE 7B DO E6 OF
<30> C9 lE 43 41 52 44 2F 44 41 54 03 lE 43 41 52 44
<40> 46 4F 52 40 20 60 61 73 6B 20 6E 6F 74 20 66 6F
<50> 75 6E 64 2E 03 lE 41 64 64 20 68 6F 77 20 60 61
<60> 6E 79 3F 20 03 5B 20 20 20 20 20 20 20 20 5D 20
<70> 20 58 20 20 20 20 20 20 20 20 20 20 20 20 20 20
<80> 20 20 20 50 20 20 SB 20 20 20 20 20 50 20 20 20
<90> 41 64 64 SF 66 6F 72 60 73 OA 20 43 41 52 44 46
<AO> 4F 52 40 3A 20 43 6F 70 79 72 69 67 68 74 20 31
<BO> 39 38 36-"20 40 49 53 4F 53 59 53 2C 20 49 6£ 63
~ ~moooooooooooooooooooooooooooo
<DO> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
<EO> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
<FO> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Drive: 3 Cylinder: X'Ol' Sector: X'03' Byte: X'OO' => X'll' = 17

Disk EOitor 1.1 - Copyright 1986 MISOSYS, Inc.
Command[; - @AC OF G HIN P QR S X Z]:

The screen is divided into two major sections. The left hand section
displays the sector's work buffer in ASCII. In this section, any sector byte
value which is not a displayable ASCII character will be displayed as a
period. The right hand section displays the sector's work buffer in hexa­
decimal; two hexadecimal digits describe the value of each byte in the
sector. Each section is displayed in groups of sixteen bytes; thus, there are
sixteen rows of sixteen bytes each for a total of 256 bytes per sector.

The actual byte location in the sector can be ascertained by the inter­
section of the high-order byte location with the low-order byte location. The

Mister ED Application Pack
OED - 3

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
OED - Disk Editor

horizontal values across the top of the screen represent the low-order byte
location of a sector byte. The vertical colu1111 of values enclosed in angle
brackets (<00>, <10>, •••) represents the high-order location of a sector
byte, .

At all ti111es, a pair of blinking cursors is positioned over ·1Jlle of the
bytes in the work sector. One cursor 1s positioned over a byte 1n the ASCll
section while the other 1s positioned at the corresponding byte location in
the hexadecimal section. The status line appearing near the bottom of the
screen displays information pertinent to the sector being displayed. This
data is:

Drive: 3 Cylinder: X'Ol' Sector: X'03' Byte: x•oo• •> X'll' = 17
a bb cc dd ee fff

The •a• field contains the logical drive assignment of the disk drive cur­
rently being edited. The "bb" and •cc• fields contain the cylinder nuntier and
sector nuntier of the disk sector currently in the work buffer. These nurrbers
are relative to zero and are expressed as hexadecimal values. The "dd" field
contains the location of the byte currently being pointed to by the buffer
cursors. This field contains a hexadecimal value. The "ee" field contains the
value of the byte at the buffer cursor. This value is displayed .in hexa­
decimal. Finally, the "fff" field also contains the value of the byte at the
buffer cursor but it is expressed in decimal.

The last line contains the c011111and prompt. Enclosed within square
brackets following the word "C011111and 11 is a brief list of the editing commands
available to you. This terse list was designed only as a memory jogger; it is
not considered to be a help screen. An underline cursor will be blinking at
the end of this line to indicate an editing command entry is requested.

Invoking OED

OED can be invoked like any other application supplied with PRD-NTO.
When you invoke the DED application, it will request PRO-NTO to open a 24 row
by 80 column window. If the window cannot be opened, a short beep will sound
from your computer's internal speaker and OED will terminate. When the window
is opened, OED will prompt you for the logical drive nurrber of the disk drive
you wish to edit via the following prompt which will appear in the lower
right hand portion of the screen:

Drive?

Respond with the logical drive nuntier <0-7> of the disk you wish to edit. If
you depress the <BREAK> key or the <EXPORT> key at this point, DEO will
terminate. If the disk designated according to your disk specification cannot
be opened, the "Drive?" query will be redisplayed. When DED gains access to
the designated disk drive, it will draw the display screen then await your
command entry.

Mister ED Application Pack
OEO - 4

Copyright (c) 1986 MISOSYS. Inc.~ All rights reserved
DEB - Disk Editor

Slll!lllar y of editing commands

The fo 11 ow1 ng command sunmary is presented for your use. These are the
command keys and their f11nctions for 0£0. Once you become famiHar with the
qperation of OEO, this section may be all you need to. refer to from time to
time to ,jog your memory. liere are OEO's commands.

Key Entry

<;>
<->
<@>
<A>
<C>
<O>
<F>
<G>
<H>
<I>
<N>
<P>
<Q>
<R>
<S>
<X>
<Z>

<LEFT ARROW>
<RIGHT ARROW>
<DOWN ARROW>
<UP ARROW>
<SHIFT LEFT>
<SHIFT RIGHT>
<SHIFT DOWN>
<SHIFT UP>
< CLEAR LEFT>

function

Advance to the next sector
Decrement to the previous sector
Move to the designated byte position
Enter ASCII modiffcation mode
find an ASCII string
Request a new OISK to edit
FINO a hexadecimal string
GO find the next search string match
Enter HEXADECIMAL modification mode
INSERT a nu 11 and push down
Move to the NEXT cylinder
Move to the PREVIOUS cylinder
QUASH the current byte and pull up
REPOSITION to a designated sector
SAVE the work buffer to the file
EXIT the Disk EOitor
ZAP to the end of the sector
Move the cursor one position LEFT
Move the cursor one position RIGHT
Move the cursor one position DOWN
Move the cur:.s-or one position UP
Move the cursor to the beginning of the row
Move the cursor to the end of the row
Move the cursor to the <FF> position
Move the cursor to the <00> position
Import text from previous screen

Cursor positioning manipulations

The <LEFT ARROW> moves tne cursor one position to the left for each
depression (or repeated key, if held down). When the cursor is positioned
over the first character of a 16-byte row, a <LEFT ARROW> request will move
the cursor to the last character position of the previous 16-byte row. When
the cursor is positioned over the first byte of a sector (the <00> position),
a <LEFT ARROW> will move the cursor to appear over the last byte of the
sector.

The <RJGHT ARROW> request will move the cursor one position to the
right. When the cursor is positioned over the last character position of a
16-byte row, a <RIGHT ARROW> request will- move the cursor to the first column
of the succeeding 16-byte row. When the cursor is positioned over the last

Mister ED ApplicAtion Pack
OEO - S

Copyright Cc) 1986 MISl)SYS, Inc., All rights reserved
OED - Disk Editor

byte of a sector (the <FF> location), a <RIGHT A.RROW> wnl move the cursor to
app.ear over the first byte of the sector.

The <DOWN ARROW> request will move the cursor to the succeeding 16-byte
row at the same column position. When the cursor is positioned in the last
16-byte row of the sector, a <DOWN ARROW> wi 11 IIIOVe the cursor to appear in
the same column of the first 16-byte row of the sector.

The <UP ARROW> request will move the cursor to the preceeding row at the
same column position. When the cursor is positioned in the first 16-byte row
of the sector, an <UP ARROW> wi 11 move the cursor to appear in the same
column of the last 16-byte row of the sector.

The <SHIFT LEFT ARROW> request wi 11 move the cursor to the first posi -
tion of the current row. The <SHIFT RIGHT ARROW> request wi 11 move the cursor
to the 'iast position of the current row. You can position the cursor to the
first byte of the sector (the <00> position) by a <SHIFT UP ARROW> request.
The <SHIFT DOWN ARROW> will position the cursor to appear over the last byte
of the sector (the <FF> position).

Finally, the <@> request wil 1 enable you to move directly to any of the
256 positions of the displayed work sector. After invoking <@>, the "dd"
status field will be blanked, You will then need to enter two hexadecimal
digits which specify the desired byte location.

Sector positioning cOlllllands [<;> <-> <N> <P> <R>J

DED provides a handful of commands to select a particular sector of the
disk for editing. If you have made any modifications to the currently dis­
played work sector which you have not saved to the disk, when you invoke one
of these sector positioning commands, those changes will NOT be applied.
Thus, it is easy to cancel any and a 11 changes to the work sector prior to
saving the sector to disk by repositioning·to a different sector.

The<;> command advances one sector to display the sector which follows
the current sector. If the currently displayed sector is the last sector of
the cylinder being edited, DED will automatically advance to the first sector
of the next cylinder. If the currently displayed sector is the last sector of
the disk being edited, the <;> command will be ignored. The<;> is easily
remembered as the lower case "+". This is also the same command key as is
used by the system's DEBUG facility for incrementing the displayed page.

The<-> command decrements one sector to display the sector which pre­
cedes the current sector. If the currently displayed sector is the first
sector of the cylinder being edited, DED will automatically decrement to the
last sector of the previous cylinder. If the currently displayed sector is
the first sector of the file being edited, the<-> command will be ignored.
The<-> command key is the same command key as is used by the system's DEBUG
facility for decrementing the displayed page.

Mister ED Application Pack
OED - 6

Copyright (c) 1986 MlSOSYS, Inc., All rights reserved
OED - Disk Editor

The <N> command advances to the NEXT cylinder of the disk and displays
the same numbered sector as is currently displayed. The cursor remains in the
same byte position. Conversely, the <P> command decrements to the PREVIOUS
cylinder of the disk and displays the same numbered sector as is currently
displayed. As with the <N> command, the cursor remains in the same byte

. position after a <P> command.

You can select a particular cylinder and sector of the file for editing
by using the <R> comand. After you invoke this command, the "bb" field will
be blanked and you will need to enter the number of the cylinder you wish to
edit. This entry will be a 2-digit hexadecimal value. If you depress <ENTER>
without making any entry, it will default to the first cylinder, <00>. After
making the cylinder entry, the "cc" field will be blanked and you will need
to enter the number of the sector on the previoosly designated cylinder that
you wish to edit. This entry must also be a 2-digit hexadecimal value. If you
depress the <ENTER> key without making an entry, the first sector will be
selected, <OO>. Don't forget that cylinder and sector numbers are relative to
zero. This means that the first sector is 0, the second is 1, and so forth.

Making changes to the work sector (<A> <H> <I> <Q> <Z>]

OED provides five commands which you
currently dislayed work buffer. Remember,
changed until you SAVE the work buffer to
this way, you are given every opportunity to
prior to saving the buffer to disk.

can use to make changes to the
the disk itself does not get
the disk via the <S> command. In
cancel any changes you have made

The <A> command places OED into ASCII modification mode. In this mode,
an entry of any print ab le ASCII ch,1r·acter wi 11 rep 1 ace the character beneath
the ASCII section cursor. The cursor wi11 then be advanced as if a <RIGHT
ARROW> had then been entered. All eight cursor positioning command keys will
be accepted for cursor repositioning while you are in ASCII modification
mode. Depression of the <BREAK> key wi 11 terminate ASCII modification mode.
OED will then be waiting for another command.

The <H> command places OED into HEXADECIMAL modification mode. ln this
mode, OED will be expecting the entry of two hexadecimal digits which will
replace the byte value beneath the hexadecimal section cursor. Any entry
which is not a hexadecima 1 digit [0-9, a-f, A-F J will be ignored; however,
all eight cursor positioning command keys will be accepted. Depression of the
<BREAK> key will terminate hexadecimal modification mode. OED will then be
waiting for another command.

The <I> command will first push all the sector bytes starting with the
byte value under the buffer cursor down by one byte position. This causes the
byte currently in the <FF> position to be dropped. Then a byte value of <00>
will be INSERTED into the location under the cursor.

The <Q> command will QUASH the byte currently under the buffer cursor by
pulling up all the subsequent bytes by one position. Then a byte value of

Mister ED Application Pack
OED - 7

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
OED. Disk Editor

<OO> will be INSERTED into the <FF> location of the sector.

The <Z> cOflllland is used to ZAP all bytes of the sector, starting at the
location of the buffer cursor, with a designated value. OED will prompt you
for this value via the query,

Zap?

The value must be entered as two hexadecimal digits followed by an <ENTER>.
If the entry is invalid, the conwnand will be ignored; otherwise, the work
buffer will be modified according to the buffer cursor location and the
entered value.

Finding strings of bytes (<C> <F> <G>J

OED provides two SEARCH commands to scan the disk being edited for a
specified string of characters. You specify the search by invoking either the
<C> command or the <F> command. The <C> ls used when you wish to enter the
search string as ASCII characters whereas the <F> is used when you wish to
enter the search string in pairs of hexadecimal digits. In either case, OED
then prompts you for the search string with the query message,

String?

You can enter up to either 16 hexadecimal digits (8 2-digit pairs) or 8 ASCII
characters to be used for the search string. Leave no spaces between hexa­
decimal digits in the case of the <F> command response. Terminate your search
string with an <ENTER> (the <ENTER> character code is not included as one of
the 16 hexadecimal digits or 8 characters).

If you enter a character for the <F> command query which is not a valid
hexadecimal digit (0-9, a-f, A-F], you will see the following error message
displayed;

Bad digit!

and the FINO request will be ignored. Otherwise, OED will then look for the
string starting with the first character immediately following the buffer
cursor. If the cursor is positioned at the <FF> location, the search will
commence at the <OO> position of the subsequent sector. OED will continue to
scan to the end of the disk or until a match is found. The matching of
alphabetic characters is case sensitive which means that characters entered
in upper case must be found in upper case and characters entered in lower
case must be found in lower case. If the search string cannot be found, the
message,

String not found!

will be displayed. At this point, the cursor location remains unchanged. If,
on the other hand, a matching string of text is found in the file, the sector

Mister ED Application Pack
OED - 8

Copyright {c} 1986 MISOSVS, Inc •• All rights reserved
0£0 - Disk Editor

containing that string will be displayed. The cursor will be repositioned to
the first ~yte of the matching string and the status information will be
updated.

A way to find each occurrence of a search string is with the GO command,
<G>. Each depression of <G> w111 find the next occurrence of the search
string until no more matching strings can be located. At this point, the
•string not found!" message as noted above will be displayed.

Saving the work sector to the disk file (<S>J

If you wish to save the current contents of the work sector to the disk
being edited, you may do so by depressing <S>. Dt:O will first ensure that you
actually had intended to save the work buffer by prompting you with the
query,

Save?

If you wish to proceed with the save operation, just depress the <ENTER> key.
Any other entry except <EXPORT> will cancel the pending request. You can
terminate OED without saving the work buffer and enter the export mode of
PRO-NTO by depressing <CLEAR RIGHT ARROW>. The result will be the same as if
you invoked <EXPORT> after requesting an exit from OED (via the <X> command).
Thus, ple~se refer to the discussion in the section on exiting from D£D for
the behaviour after such an <EXPORT> request.

After you save the work buffer (or cancel the request), OED is expecting
the entry of another command.

Changing to a new DISK

The <D> command allows you to select another disk for editing. When you
invoke the <D> command, you will be prompted for the name of the disk via the
query,

Drive?

At this point, the operation of 0£0 will be identical to the operation as if
you had just entered OED. Respond with the logical drive number of the disk
you wish to edit. If you depress the <BREAK> key or the <EXPORT> key at this
point, OED will terminate. If the disk designated according to your disk
specification cannot be accessed, the "Drive?" query will be redisplayed.
When OED gains access to the designated disk drive, it will draw the display
screen then await your command entry.

Mister ED Application Pack
OED - 9

Copyright {c) 1986 MISOSYS, Inc., All rights reserved
OEO - 01sk Editor

Exiting fr04II OED [<X>J

When you have completed your edits and wish to exit OED, simply depress
the <X> command. OED wi1l first ensure that you actually had intended to
terminate the application by prompting you with the query,

Exit?

If you want DED to terminate, just depress the <ENTER> key. Any other entry
except <EXPORT> will cancel the pending request. If you wish to export the
screen (or a portion of it) back to the interrupted program, depress <EXPORT>
which is the <CLEAR RIGHT ARROW> key combination. OED will then enter the
export mode. Don't forget that if you abort the export mode by depressing the
<BREAK> key, PRO-NTO will return to the previously interrupted program as if
export had not been invoked.

There are two ways of controlling what PRO-NTO does at the end of each
exported line depending on how you mark the closure of the rectangle. If you
close the rectangle via the <ENTER> key, a carriage return will be added to
the "input" at the end of each marked line. This carriage return will be
appended regardless of whether the marked rectangle is one or more lines. If
the rectangle is closed by the depression of <SHIFT ENTER>, then the line is
input from the beginning mark to the ending mark in a continuous stream; no
carriage returns are added by PRO-NTO.

The rectangle is defined by the two points making up its northwest to
southeast diagonal. These two points may be marked in the following manner:

1. Position the cursor to the upper left corner of the
rectangle which will contain the information. The
four arrow keys, <LEFT>, <RIGHT>, <UP>, and <DOwN>,
will move the cursor around the screen.

2. Depress <CONTROL> to mark the beginning of the
rectangle block. The char.acter under the cursor
wi 11 be replaced on the screen with a left square
bracket which indicates the marked position. Don't
worry about the bracket disp1ayed; the correct
character will be provided as input.

3. Position the cursor to the lower right corner of this
rectangle again using the four arrow keys. This
position may be on the same display row as the
beginning mark.

4. Depress the <ENTER> or <SHIFT ENTER> key to mark
the end of the marked block. This now defines the
rectangle. The export will commence. The export
function may be aborted anytime prior to marking the
end of the rectangular block simply by depressing
the <BREAK> key.

Mister ED App1icat1on Pack
OED - 10

.Copyright (c) 1986 MISOSYS, Inc., All rights r•served
OOLOAD - viOeO LOAD application

OOLOAO Application

The OOLOAD application wi 11 allow you to load a previously saved video
screen display from a disk file into the video screen. Such a file may have
been generated as 24 80-byte strings, each terminated by a carriage return,
by the OOSAVE application. Why would you want to do such a thing? Well, the
best reason would be to directly gain access to a video screen file which was
previously saved by either the DOSAVE or V£D applications. After access is
easily achieved, the image or a portion of the image could be exported back
to the application or program interrupted when OOLOAD was invoked.

When you invoke the OOLOAD application, it will request PRO-NTO to open
a window. If a window cannot be opened, a short beep wi 11 sound from your
computer's internal speaker and DOLOAD will terminate. This happens when you
have exceeded the maximum number of windows that can be open at one time.
That's a rare instance. When the window is opened, DOLOAD will prompt you to
enter a file specification via the prompt,

Fi lespec?

The screen image that was saved in the disk file will be copied to the video
screen. OOLOAD will then automatically terminate and enter the EXPORT mode of
PRO-NTO. Thus, you then can conveniently mark a rectangular area of the dis­
play for export back to the interrupted program. Don't forget that if you
abort the export mode by depressing the <BREAK> key, PRO-NTO will return to
the previously interrupted program as if export had not been invoked.

There are two ways of controlling what PRO-NTO does at the end of each
exported line depending on how you mark the closure of the rectangle. If you
close the rectangle via the <ENTERY1ey, a carriage return wi 11 be added to
the "input" at the end of each marked line. This carriage return wi 11 be ap­
pended regardless of whether the marked rectangle is one or more lines. If
the rectangle is closed by the depression or ~SHIFT ENTER>, then the line is
input from the beginning mark to the ending mark in a continuous stream; no
carriage returns are added by PRO-NTO.

The rectangle is defined by the two points making up its northwest to
southeast diagonal. These two points may be marked in the following manner:

1. Position the cursor to the upper left corner of the
rectangle which will contain the information. The
four arrow keys, <LEFT>, <RIGHT>, <UP>, and <DOWN>,
will move the cursor around the screen.

2. Depress <CONTROL> to mark the beginning of the
rectangle block. The character under the cursor
will be replaced on the screen with a left square
bracket which indicates the marked position. Don't
worry about the bracket displayed; the correct
character will be provided as input.

Mister ED Application Pack
DOLOAD - 11

Copyright (c) 1986 MlSOSYS. Inc., All rights reserved
DOLOAD • v1DeO LOAD application

3. Position the cursor to the lower right corner of this
rectangle again using the four arrow keys. This
position may be on the same display row as the
be9inning mark.

4. Depress the <ENTER> or <SHIFT ENTER> key to mark
the end of the marked .b1ock. This now defines the
rectangle. The export wil 1 commence. The export
function may be aborted anytime prior to markin9 the
end of the rectangular block simply by depressing
the <BREAK> key.

Mister ED Application Pack
DOLOAD ~ 12

Copyright (cl 1986 MISOSYS, Inc., Al1 rtghts reserved
fEO - f11e Editor

FED A9Plication

The File EDitor (FED) application will a1low you to edit any disk file
on a record basis with fun-screen editing. A record is considered to be a
256-byte disk sector. The advantage of fu 11 screen editing 1s that you can
make as many changes to a work copy of a record lfithout actually affecting
the disk file .until such time as ycu "saven your changes.

Editing display screen

At all times during the editing of a record, the work buffer for the
selected record will be displayed per the following screen layout:

0123456789ABCDEF 00 01 02 03 04 05 06 07 08 09 OA OB OC OD 0£ OF
=====:===~======================================:============================

PRONTOFile £Dito <00> 50 52 4F 4E 54 4F 46 69 6C 65 20 45 44 69 74 6F
r <10> 72 20 03 00 00 00 00 00 00 00 00 00 00 00 00 00
.(.(............ <20> ID 28 lC 28 00 00 00 00 00 00 00 00 00 00 00 00 " <30> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 <40> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................. <SO> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 <60> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 <70> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
.................. <80> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 <90> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
.................. <AO> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................ <BO> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
········· <CO> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02/11/8615 :05 :48 <DO> 30 32 21:>31 31 2F 38 36 31 35 3A 30 35 3A 34 38
Copyright (c) 19 <EO> 43 6F 70 79 72 69 67 68 74 20 28 63 29 20 31 39
86 MlSOSYS, Inc. <FO> 38 36 20 40 49 53 4F 53 59 53 2C 20 49 GE 63 2E

File: FED/APP :7 Sector: o Byte: x·oo· => x•so· = 80

File EOitor 1.1 - Copyright 1986 MISOSYS, Inc.
Command[; - @ABC EFG HIN QR S X ZJ:

The screen is divided into two major sections. The left hand section
disp1ays the record's work buffer in ASCII. In this section, any record byte
value lfhich is not a disp1ayable ASCII character will be displayed as a
period. The right hand section displays. the record's work buffer in hexa­
dec1ma 1; two hexadecima 1 digits describe the va Jue of each byte in the
record. Each section is displayed in groups of sixteen bytes; thus, there are
six teen rows of sixteen bytes each for a tota 1 of 256 bytes per record.

Too artua1 byte location in the record canoe ascertained by the inter­
'Hecti()ft of th~ high-order byte loeation with the low-order byte location. The
horiivntal value~ across lhe top of the ·screen represent the low-order byte
loc,,.ti()n of a record byte. The vertical column of values enclosed in angle

Mfster ED Application Pack
FED - 13

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
FEO - File Editor

brackets (<00>, <10>, .••) represents the high-order location .. of a record
byte.

At all times, a pair of blinking cursors is positioned over one of the
bytes in the work record. One cursor is positioned over .a byte in the ASCII
section while the other is positioned at the corresponding byte location in
the hexadecimal section. The status line appearing near the bottom of the
screen displays information pertinent to the record being displayed. This
data is:

File: FED/APP:7 Sector: 0 Byte: x•oo• => X'50' = 80
aaaaa. . • . . • • . • • • • • • • • . • • • • bbbbb cc dd eee

The "aaaaa" field contains the specification of the file corrently being
edited. The "bbbbb" field contains the number of the record expressed in
decimal. This number is relative to zero for the first record. The "cc" field
contains the location of the byte currently being pointed to by the buffer
cursors. This field contains a hexadecimal value. The "dd" field contains the
value of the byte at the buffer cursor. This value is displayed in hexa­
decimal. finally, the "eee" field also contains the value of the byte at the
buffer cursor but it is expressed in decimal.

The last line contains the command prompt. Enclosed within square
brackets following the word "Command" is a brief list of the editing commands
available to you. This terse list was designed only as a memory jogger; it is
not considered to be a help screen. An underline cursor will be blinking at
the end of this line to indicate an editing command entry is requested.

Invoking FEO

FED can be invoked like any other application supplied with PRO-NTO.
When you invoke the FED application, it will request PRO-NTO to open a 24 row
by 80 co 1 umn window. If the wi ndov1 cannot be opened, a short beep wi 11 sound
from your computer's internal speaker and FED will terminate. When the window
is opened, FED will prompt you for the name of the disk file you wish to edit
via the following prompt which will appear in the lower right hand portion of
the screen:

Filespec?

Respond with the file specification of the file you wish to edit. If you
depress the <BREAK> key or the <EXPORT> key at this point, FED will termi­
nate. If the file designated according to your file specification cannot be
opened, the "Filespec?" query will be redisplayed. When FEO gains access to
the designated disk file, it will draw the display screen then await your
command entry.

Mister ED Application Pack
FED - 14

Copyright (c) 1986 MISOSYS, Inc,, AH rights reserved
fEO • File Editor

Summary of >editing c011111ands

The following command sufllllary is presented for your use. These are the
command keys and their functions for FED. Once you become familiar with the
nperation of FEO, this section may be all you need to refer to from time to
time to jog your memory. Here are FED'S cOlmlands.

Key Entry

<;>
<->
<@>
<A>

<C>
<E>
<F>
<G>
<H>
<I>
<N>
<Q>
<R>
<S>
<X>
<Z>

<LEFT ARROW>
<Rl GHT ARROW>
<DOWN ARROW>
<UP ARROW>
<SHIFT LEFT>
<SHIFT RIGHT>
<SHIFT DOWN>
<SHIFT UP>
<CLEAR LEFT>

function

Advance to the next record
Decrement to the previous record
Move to the designated byte position
Enter ASCII modification mode
Move to the BEGINNING of the file
find an ASCII string
Move to the ENO of the file
FINO a hexadecimal string
GO find the next search string match
Enter HEXADECIMAL modification mode
INSERT a nu 11 and push down
Request a NEW file to edit
QUASH the current byte and pu 11 up
Position to a designated RECORD
SAVE the work buffer to the file
EXIT the File EDitor
ZAP to the end of the record
Move the cursor one position LEFT
Move the cursor one position RIGHT
Move the cursor one position DOWN
Move the cursor' one position UP
Move the cursor to the beginning of the row
Move the cursor to the end of the row
Move the cursor to the <FF> position
Move the cursor to the <OO> position
Import text from previous screen

Cursor posftioning manipulations

The <LEFT ARROW> moves the cursor one position to the left for each
depression (or repeated key, if held down). When the cursor is positioned
over the first character of a 16-byte row, a <LEFT ARROW> request will move
the cursor to the last character position of the previous 16-byte row. When
the cursor is positioned over the first byte of a record (the <00> position),
a <LEFT ARROW> will move the cursor to appear over the last byte of the
record.

The <RIGHT ARROW> request will move the cursor one oosition to the
right. When the cursor is positioned over the last character position of a
16-byte row, a <RIGHT ARROw> request will ·move the cursor to the first column
of the succeeding 16-byte row. When the cursor is positioned over the last

Mister ED Application Pack
FED - 15

Copyright (c) 1986MISOSYS, Inc •• All rights reserved
FED - File Ed1tor

byte of a record (the <FF> location), a <RIGHT ARROW> will 1110ve the cursor to
appear over the first byte of the record.

The <DOWN ARROW> request will move the cursor to the succeeding 16-byte
row at the same column position. When the cursor is positioned in the last
16-byte row of the record, a <DOWN ARROW> wi 11 move the <:Ursor to appear in
the same column of the first 16-byte row of the record.

The <UP ARROW> request will move the cursor to the preceeding row at the
same column position. When the cursor is positioned in the first 16-byte row
of the record, an <UP ARROW> will move the cursor to appear in the same
column of the last 16-byte row of the record.

The <SHIFT LEFT ARROW> request will move the cursor to the first posi­
tion of the current row. The <SHIFT RIGHT ARROW> request wi 11 move the cursor
to the last position of the current row. You can position the cursor to the
first byte of the record (the <00> position) by a <SHIFT UP ARROW> request.
The <SHIFT DOWN ARROW> will position the cursor to appear over the last byte
of the record (the <FF> position).

Finally, the<@> request will enable you to move directly to any of the
256 positions of the displayed work record. After invoking <@>, the "cc"
status field will be blanked. You will then need to enter two hexadecimal
digits which specify the desired byte location.

Record positioning commands[<;><-> <£> <R>]

FED provides a handful of commands to select a particular record of the
file for editing. If you have made any modifications to the currently dis­
played work record which you have not saved to the disk file, when you invoke
one of these record positioning commands, those changes will NOT be applied.
Thus, it is easy to cancel any and all changes to the work record prior to
saving the record to disk by repositioning to a different record.

The <;> command advances one record to display the record which follows
the current record. If the currently displayed record is the last record of
the file being edited, the<;> command will be ignored. The<;> is easily
remembered as the lower case "+". This is also the same command key as is
used by the system's DEBUG facility for incrementing the displayed page.

The<-> command decrements one record to display the record which pre­
cedes the current record. If the currently displayed record is the first
record of the file being edited, the <-> command will be ignored. The<->
command key is the same command key as is used hy the system's DEBUG facility
for decrenenting the displayed page.

The command captures the first record of the file as the work buffer
and displays that record. The cursor is positioned to the <00> position.
Conversely, the <E> command captures the last record of the file as the work
buffer and display, that record. In this case, the cursor is positioned to

Mlster ED Application Pack
FEO - 16

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
fED - file Editor

Yie byte In · that record which is the iast byte of ·the file according to the
information in ·the system's .directory entry for that file.

You can select a particular record of the file for editing by using the
<R> comand. After you invoke this cO!lllland, the "bbbbb" field will be blanked
and you will need to enter the number of the record you wish to edit. This
entry wi 11 be a DECIMAL value. If you depress <£rtTER> without making any
.decimal entry, the first record will be selected which is the same as the
command. Don• t forget that record nunt>ers are re 1 at i ve to zero. This means
tl)at the first record is 0, the second is 1, and so forth.

Making changes to the work record (<A> <Ii> ·<I> <Q> <Z>J

FED provides five commands which you can use to make changes to the
currently dislayed work buffer. Remember, the file itself does not get
changed until you SAVE the work buffer to the file via the <S> command. In
this way, you are given every opportunity to cancel any changes you have made
prior to saving the buffer to disk.

The <A> command places FED into ASCII modification mode. In this mode,
an entry of any printable ASCII character wi 11 replace the character beneath
the ASCII section cursor. The cursor will then be advanced as if a <RIGHT
ARROW> had then been entered. Al1 eight cursor positioning command keys will
be accepted for cursor repositioning while you are in ASCII modification
mode. Depression of the <BREAK> key wi 11 terminate ASCII modification mode.
FED will then be waiting for another command.

The <H> command places FED into HEXADECIMAL modification mode. In this
mode, FED will be expecting the entfy of two hexadecimal digits which will
replace the byte value beneath the hexadecimal section cursor. Any entry
which is not a hexadecimal digit [0-9, a-f, A-F} will be ignored; however,
all eight cursor positioning cOlll!lland keys will be accepted. Depression of the
<BREAK> key will terminate hexadecimal modification mode. FED will then be
waiting for another command.

The <I> command will first push all the record bytes starting with the
byte value under the buffer cursor down by one byte position. This causes the
byte currently in the <FF> position to be dropped. Then a byte value of <OO>
will be INSERTED into the location under the cursor.

The <Q> command will QUASH the byte currently under the buffer cursor by
pulling up all the subsequent bytes by one position. Then a byte value of
<00> will be INSERTED into the <FF> location of the record.

The <Z> command is used to ZAP all bytes of the record, starting at the
location of the buffer cursor, with a designated value. FED will prompt you
for this value via the query,

Zap?

Mister ED Application Pack
FED - 17

CoPyright (c) 1986 KISOSYS, Inc., All rights reserved
FEO - file Editor

The value must be entered as two hexadecimal digits followed by an <ENTER>.
If the entry is invalid, the command w111 be ignored; otherwise, the work
buffer will be modified according to the buffer cursor location and the
entered value.

finding strings of bytes [<C> <F> <G>]

FED provides two SEARCH commands to scan the file being edited for a
specified string of characters. You specify the search by invoking either the
{C> command or the <F> cORJ11and. The <C> is used when you wish to enter the
search string as ASCII characters whereas the <F> is used when you wish to
enter the search string in pairs of hexadecimal digits. In either case, FED
then prompts you for the search string with the query message,

String?

You can enter up to either 16 hexadecimal digits (8 2-digit pairs) or 8 ASCII
characters to be used for the search string. Leave no spaces between hexa­
decimal digits in the case of the <F> command response. Terminate your search
string with an <ENTER> (the <ENTER> character code is not included as one of
the 16 hexadecimal digits or 8 characters).

If you enter a character for the <F> command query which is not a valid
hexadecimal digit [0-9, a-f, A-FJ, you will see the following error message
displayed;

Bad digit!

and the FIND request will be ignored. Otherwise, HO will then look for the
string starting with the first character immediately following the buffer
cursor. If the cursor is positioned at the <FF> location, the search will
commence at the <00> position of the subsequent record. The matching of
alphabetic characters is case sensitive which means that characters entered
in upper case must be found in upper case and characters entered in lower
case must be found in lower case. If the search string cannot be found, the
message,

String not found!

will be displayed. At this point, the OJrsor location remains unchanged. If,
on the other hand, a matching string of text is found in the file, the record
containing that string will be displayed. The cursor will be repositioned to
the first byte of the matching string and the status information will be
updated.

A way to find each occurrence of a search string is with the GO command,
<G>. Each depression of <G> wi 11 find the next occurrence of the search
string until no more matching strings can be located. At this point, the
"String not found!" message as noted above will be displayed.

Mlster ED Application Pack
FED - 18

Copyright (c) 1986 l•HSOSYS. Inc •• All ri9hts reserved
FED - file E-ditor

Saving the work record to the dijsk file [<S>]

If you wish to save the current contents of the work record to the disk
f'lle being edited, you may do so by depressing <S>. fl:O will first ensure
that you actually had intended to save the work buffer by prompting you with
the query,

Save?

If you w.lsh to proceed with the save operation, just depress the <ENTER> key.
Any other entry except <EXPORT> will cancel the pending request. You can
terminate FED without saving the work buffer and enter the export mode of
PRO-NTO by depressing <CLEAR RIGHT ARROW>. The result will be the same as if
you invoked <EXPORT> after requesting an exit from FED (via the <X> command).
Thus, please refer to the discussion in the section on exiting from FED for
the behaviour after such an <EXPORT> request.

After you save the work buffer (or cancel the request), FED is expecting
the entry of another convnand.

Changing to a NEW file

The <N> command allows you to select another file for editing. When you
invoke the <N> command, you will be prompted for the name of the file via the
query,

Filespec?

At this point, the operation of FED will be identical to the operation as if
you had just entered FED. Respond with the file specification of the file you
wish to edit. If you depress the <BREAK> key or the <EXPORT> key at this
point, FED will terminate. If the file designated according to your file
specification cannot be opened, the "Filespec?" query will be redisplayed.
When FED gains access to the designated disk file, it will draw the display
screen then a,rni t your Cl)lll11and entry.

Exiting from FED [<X>J

When you have completed your edits and wish to exit FED, simply depress
the <X> convnand. FED will first ensure that you actually had intended to
terminate the application by prompting you with the query,

Exit?

If you want FED to terminate, just depress the <ENTER> key. Any other entry
except <EXPORT> will cancel the pending request. If you wish to export the
screen (or a portion of it) back to the 1nterrupted program, depress <EXPORT>
which is the <CLEAR RIGHT ARROW> key combination. FED will then enter the

Mister ED Application Pack
FED - 19

Copyright (cl 1986 MIS<lsYS. Inc., All rights reserved
f£D - file Ed1tor

export mode. Don't forget that if you abort the export mode by depressing the
<BREAK> key, PRO-NTO will return to the previously interrupted program as if
export had not been invoked.

There are two ways of control ling what PRO-NTO does at the end of each
exported line depending on how you mark the closure of the rectangle. If you
close the rectangle via the <ENTER> key, a carriage return wi 11 be added to
the "input" at the end of each marked line. This carriage return wil 1 be
appended regardless of whether the marked rectangle is one or more lines. If
the rectangle is closed by the depression of <SHIFT ENTER>, then the line is
input from the beginning mark to the ending mark in a continuous stream; no
carriage returns are added by PRO-NTO.

Tne rectangle is defined by the two points making up its northwest to
southeast diagonal. These two points may be marked in the following manner:

1. Position the cursor to the upper left corner of the
rectangle which will contain the information. The
four arrow keys, <LEFT>, <RIGHT>, <UP>, and <DOWN>,
will move the cursor around the screen.

2. Depress <CONTROL> to mark the beginning of the
rectangle block. The character under the cursor
will be replaced on the screen with a left square
bracket which indicates the marked position. Don't
worry about the bracket displayed; the correct
character will be provided as input.

3. Position the cursor to the lower right corner of this
rectangle again using the four arrow keys. This
position may be on the same display row as the
beginning mark.

4. Depress the <ENTER> or <SHIFT ENTER> key to mark
the end of the marked block. This now defines the
rectangle. The export will commence. The export
function may be aborted anytime prior to marking the
end of the rectangular block simply by depressing
the <BREAK> key.

Mister ED Application Pack
FED - 20

Copyright (c) 1986 MISOSYS, Inc •• All rfghts reserved
.MEO - Memory Editor

MEO Application

The Memory EDitor (MEO} ,application will allow you to edit any random
access memory (RAM) page Ol1 a page basis with full-screen editing. A page is
considered to be a 256-byte block of RAM origined on an <xxOO> basis in the
address space of the computer { <xxOO> Is expressed in hexadecima ll. The
advantage of full screen editing is that you can make as many changes to. a
work copy of a page without actually affecting the memory until such time as
you "save• your changes.

Eiiting display screen

At all times during the editing of a page, the work buffer for the
selected page will be displayed per the following screen layout:

Ol23456789A8COEF

! ASM. }.N •••• *.- ..
I .B•.- .•• / ••••.••
I A' •••• W •• /.q).F.
I *.) .. * .•.. S/ .. z/
I •• (+ ••• /.*.} .• -.
I * ••• w.w.w
I).80M ••• c7
I ••• o •. x ••••••• a.
I • { ••••• 7*. - •• />
l ••••• + •• 7 ••• /.T
I J> ••••••••••••••
I FEO/ASM - 02/11/
I 86. ;*=*=* •• OPT IO
I N. CI.;*=*=*. *GET
I SVCMAC. ;*=*=* .C
I MOPOS .EQU. 23 .SHL

<00>
<10>
<20>
<30>
<40>
<50>
<60>
<70>
<80>
<90>
<AO>
<BO>
<CO>
<DO>
<EO>
<FO>

00 01 02 03 04 05 06 07 08 09 OA 08 OC 00 OE OF

41 53 40 01 29 00 4E 06 £5 09 EB 2A F9 20 ES 87
ED 42 22 F9 20 El CO 8C 2F 03 EB Dl CO AO 2£ 11
41 27 00 00 00 F5 57 CO 11 2F CO 71 29 DO 46 07
2A BF 29 CO AF 2A 10 F8 C9 CO 53 2f CO CD 7A 2F
02 F3 28 28 E5 CO BC 2F ES 2A 01 29 CD FE 20 FS
2A 00 00 F5 57 F4 57 F5 57 00 00 8A DO 08 00 SF
00 00 00 00 07 01 29 ED 42 44 4D 03 El CD 43 2F
Fl Cl El 30 01 09 78 Bl ca ED 88 BF C9 FE 61 08
FE 78 DO 06 20 C9 11 DO 37 2A f9 20 CD 89 2F 3E
FF EB ED Bl 20 112811 Cf 37 £5 CD BC 2F El 54
50 3E FE ED 89 00 00 00 00 00 00 00 00 00 00 00
46 45 44' 2f 41 53 40 20 2D 20 30 32 2F 31 31 2f
38 36 OD 38 2A 30 2A 30 2A OD 09 4F 50 54 49 4F
4E 09 43 49 OD 38 2A 30 2A 30 2A OD 2A 47 45 54
20 53 56 43 40 41 43 00 38 2A 30 2A 30 2A 00 43
4D 44 50 4F 53 09 45 51 55 09 32 33 2E 53 48 4C

Banks: 31 Current Bank: 2 Page: X'BO' Byte: X'OO' => X'41' = 65

Memory EDitor 1.0 - Copyright 1986 MISOSYS, Inc.
CQllllland [; - @ A 6 CD F G HIN P Q S X ZJ: -

The screen is divided into two major sections. The left hand section
displays the page's work buffer in ASCII. In this section, any page byte
va·tue which 1s not a displayable ASCII character will be displayed as a
period. The right hand section displays the page's work buffer in hexa­
decimal; two hexadecimal digits describe the value of each byte in the page.
Each section is displayed in groups of sixteen bytes; thus, there are sixteen
rows of sixteen bytes each for a total of 256 bytes per page.

The actual byte location in the page can be ascertained by the inter­
Sl.!Ction of the high-order byte location with the low-order byte location. The

Mister ED Application Pack
MED - 21

Copyright (c) 1986 MisbSYS, Inc., All rights reserved
MED - Memory Editor

horizontal values across the top of the screen represent the low-order byte
location of a page byte. The vertical column of values enclosed in angle
brackets (<OO>, <10>, •••) represents the high-order location of a page byte.

At all times, a pair of blinking
bytes in the work buffer. One cursor
section while the other is positioned
the hexadecimal section. The status
screen displays information pertinent
is:

cursors is positioned over one of the
is positioned over a byte in the ASCII
at the corresponding byte location in
line appearing near the bottom of the
to the page being displayed. This data

Banks: 31 Current Bank: 2 Page: X'80' Byte: X'OO' => X'41' = 65
aa bb cc dd ee fff

The "aa" field contains the maximum number of memory banks accessible to the
DOS and is shown in decimal [the "31" shown in the example reflects a Model 4
equipped with a one megabyte memory hardware option]. The "bb" field contains
the currently selected memory bank and is also shown in decimal. The "cc"
field contains the memory page currently in the work buffer. This number is
relative to zero for the first page and is expressed in hexadecimal. The page
contents of the memory bank specified by the "bb" field will be in the work
buffer when this "cc" field is designated within the range <80> through <FF>.
The "dd" field contains the location of the byte currently being pointed to
by the buffer cursors. This field contains a hexadecimal value. The "ee"
field contains the value of the byte at the buffer cursor. This value is
displayed in hexadecimal. Finally, the "fff" field also contains the value of
the byte at the buffer cursor but it is expressed in decimal.

The last line contains the command prompt. Enclosed within square
brackets following the word "Command" is a brief list of the editing commands
available to you. This terse list was designed only as a memory jogger; it is
not considered to be a help screen. An underline cursor will be blinking at
the end of this line to indicate an editing command entry is requested.

Invoking MEO

MED can be invoked like any other application provided with PRO-NTO.
When you invoke the MED application, it will request PRO-NTO to open a 24 row
by 80 column window. If the window cannot be opened, a short beep will sound
from your computer's internal speaker and MEO wi 11 terminate. When the window
is opened, MED w'HJ will draw the display screen defaulting to bank 0, page
O; then await your command entry.

Mister ED Application Pack
MED - 22

Copyright {cl 1986 MISOSYS, Inc., All rights reserved
MED - Memory Editor

Suamary of editing cOA111ands

The following command su0111ary is presented for your use. These are the
colllllland keys and their functions for MEO. Once you become familiar with the
operation of MEO, this section may be all you need to refer to from time to
time to jog your memory. Here are MEO's commands.

Key Entry

<·>
<:>
<@>
<A>

<C>
<D>
<F>
<G>
<H>
<I>
<N>
<P>
<Q>
<S>
<X>
<Z>

<LEFT ARROW>
<RIGHT ARROW>
<DOWN ARROW>
<UP ARROW>
<SHIFT LEFT>
<SHIFT RIGHT>
<SHI FT DOWN>
<SHIFT UP>
<CLEAR LEFT>

Function

Advance to the next page
Decrement to the previous page
Move to the designated byte position
Enter ASCII modification mode
Request a specific BANK of memory
Find an ASCII string
DISPLAY a specified page of memory
FIND a hexadecimal string
GO find the next search string match
Enter HEXADECI~AL modification mode
INSERT a nu 11 and push down
Advance to the NEXT bank of memory
Decrement to the PREVIOUS bank of memory
QUASH the current byte and pu 11 up
SAVE the work buffer to memory
EXIT the Memory EDitor
ZAP to the end of the page
Move the cursor one position LEFT
Move the cursor one position RIGHT
Move the cursor one position DOWN
Move the curstir one position UP
Move the cursor to the beginning of the row
Move the cursor to the end of the row
Move the cursor to the <FF> position
Move the cursor to the <00> position
Import text from previous screen

Cursor positioning manipulations

The <LEFT ARROW> moves the cursor one position to the left for each
depression (or repeated key, if held down). When the cursor is positioned
over the first character of a 16-byte row, a <LEFT ARROW> request will move
the cursor to the last character position of the previous 16-byte row. When
the cursor is positioned over the first byte of a page (the <00> position), a
<LEFT ARROW> will move the cursor to appear over the last byte of the page.

The <RIGHT ARROW> request will move the cursor one position to the
rl9ht. When the cursor is positioned over the last character position of a
16-~yte row, a <RIGHT ARROW> request will move the cursor to the first column
of the succeeding 16-byte row. When the cursor is positioned over the last
byte of a page (the <FF> location), a <RIGHT ARROW> will move the cursor to

Mister ED Application Pack
MED - 23

COl)yright (c) 1986 MISOSYS, Inc., All rights reserved
MEO - Memory Editor

appear over the first byte of the page.

The <DOWN ARROW> request will move the cursor to the succeeding 16-byte
row at the same column position. When the cursor is positioned in the last
16-byte row of the page, a <DOWN ARROW> wi 11 move the cursor to appear in the
same column of the first 16-byte row of the page.

The <UP ARROW> request will move the cursor to the preceed1ng row at the
same column position. When the cursor is positioned in the first 16-byte row
of the page, an <UP ARROW> will move the cursor to appear in the same column
of the last 16-byte row of the page.

The <SHIFT LEFT ARROW> request will move the cursor to the first posi­
tion of the current row. The <SHIFT RIGHT ARROW> request will move the cursor
to the last position of the current row. You can position the cursor to the
first byte of the page (the <00> position) by a <SHIFT UP ARROW> request. The
<SHIFT DOWN ARROW> wil 1 position the cursor to appear over the last byte of
the page (the <FF> position).

Finally, the <@> request will enable you to move directly to any of the
256 positions of the displayed work page. After invoking<@>, the "dd" status
field will be blanked. You will then need to enter two hexadecimal digits
which specify the desired byte location.

Page positioning c0111mands [<;> <-> <D> <N> <P>]

MED provides a handful of commands to select a particular page of the
file for editing. If you have made any modifications to the currently dis­
played work page which you have not saved to memory, when you invoke one of
these page positioning commands, those changes will NOT be applied. Thus, it
is easy to cance 1 any and al 1 changes to the work page prior to saving the
page to memory by repositioning to a different page.

The<;> command advances one page to display the page which follows the
current page. If the currently displayed page is the last page in the
machine's address space (page <FF>), the<;> command will advance to page
<00>, The <;> is easily remembered as the lower case "+". This is also the
same command key as is used by the system's DEBUG facility for incrementing
the displayed page.

The<-> CQllll1and decrements one page to display the page which precedes
the current page. If the currently displayed page is the first page of the
address space (the <00> page), the<-> comand will advance to page <FF>. The
<-> command key is the same command key as is used by the system's DEBUG
facility for decrementing the displayed page.

The command is used to select another BANK of RAM for accessing
pages in the <80> through <FF> range. When you invoke this command, the "bb"
field will be blanked. You are expected to enter up to a 2-digit decimal bank
number (relative to zero). Terminate your entry with the <ENTER> key. An

Mister ED Application Pack
MED - 24

Copyright (c) 1986 KlSOSVS, Inc., All rights reserved
MED • Kemory fditor

•invalid bank scelection designation will be ignored.

The <H> command advances the bank selection to the NEXT higher numbered
bank. If the highest numbered bank is currently selected, this command is
ignored. Conversely, the <P> cOIMland decrements the bank selection to the
previous bank (the next lower numbered bank). If bank <O> had been selected,
the command will be ignored.

In each of the bank selection commands, (, <N>, and <P>), if the
displayed page is currently in the <80> through <FF> range, the work buffer
will be loaded with the contents of the memory page from the selected bank.
The display wi 11 be redrawn with the contents of the buffer and the cursor
position remains unchanged. If the currently displayed page is in the <00>
through <7F> range, only the status line is updated to reflect the new bank
selection.

You can DISPLAY a particular page of memory for editing by using the <O>
command. After you invoke this command, the "cc" field wi11 be blanked and
you will need to enter the number of tne page you wish to edit. This entry
will be a HEXADECIMAL value. If you depress <E~TER> without making any entry,
the first page will be selected (page <OO>). Don't forget that page numbers
are relative to zero. This means that the first page 1s 0, the second is 1,
and so forth, with the last being <Ff>.

Making changes to the work page (<A> <H> <I> <Q> <Z>J

MED provides five commands which you can use to make changes to the
currently dislayed work buffer. Remember, memory itself does not get changed
unt i 1 you SAVE the work buffer t6 memory vi a the <S> command. In this way,
you are given every opportunity to cancel any changes you have made prior to
saving the buffer to memory.

The <A> command places MED into ASCII modification mode. In this mode,
an entry of any printable ASCII character will replace the character beneath
the ASCII section cursor. The cursor wi 11 then be advanced as if a <RIGHT
ARROW> had then been entered. All eight cursor positioning command keys will
be accepted for cursor repositioning while you are in ASCII modification
mode. Depression of the <BREAK> key will terminate ASCII modification mode.
MED will then be waiting for another command.

The <H> command places MED into HEXADECIMAL modification mode. In this
mode, MED will be expecting the entry of two hexadecimal digits which will
replace the byte value beneath the hexadecimal section cursor. Any entry
which is not a hexadecimal digit (0-9, a-f, A-F) will be ignored; however,
all eight cursor positioning cQl!llland keys will be accepted. Depression of the
<BREAK> key will terminate hexadecimal modification mode. MED will then be
waiting for another command.

The <I> command will first push all the page bytes starting with the
byte value under the buffer cursor down by one byte position. This causes the

Mister ED Application Pack
Mfl> - 25

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
14£0 - Memory Editor

byte currently in the <FF> position to be dropped. Then a byte value of <00>
wi 11 be INSERTED into the location under the cursor.

The <Q> comand wi 11 QUASH the byte currently under the buffer cursor by
pu 11 ing up a 11 the subsequent bytes by one position. Then a byte value of
<00> will be INSERTED into the <FF> location of the page.

The <Z> comnand is used to ZAP all bytes of the page, starting at the
location of the buffer cursor, with a designated value. MED will prompt you
for this value via the query,

Zap?

The value must be entered as two hexadecimal digits followed by an <~TER>.
If the entry is invalid, the command will be ignored; otherwise, the work
buffer wi 11 be modified according to the buffer cursor location and the
entered value.

Finding strings of bytes [<C> <F> <G>J

MED provides two SEARCH commands to scan memory for a specified string
of characters. You specify the search by invoking either the <C> command or
the <F> command. The <C> is used when you wish to enter the search string as
ASCII characters whereas the <F> is used when you wish to enter the search
string in pairs of hexadecimal digits. In either case, MEO then prompts you
for the search string with the query message,

String?

You can enter up to either 16 hexadecimal digits (8 2-digit pairs) or 8 ASCII
characters to be used for the search string. Leave no spaces between hexa­
decimal digits in the case of the <F> command response. Terminate your search
string with an <ENTER> (the <ENTER> character code is not included as one of
the 16 hexadecimal digits or 8 characters).

If you enter a character for the <F> colMland query which is not a valid
hexadecimal digit (0-9, a-f, A-FJ, you will see the following error message
disp 1 ayed;

Bad digit!

and the FINO request will be ignored. Otherwise, MED will then look for the
string starting with the first character immediately following the buffer
cursor. If the cursor is positioned at the <Ff> location, the search will
commence at the <00> position of the subsequent page. When MED reaches the
end of page <FF> during the search, it will automatically continue the scan
starting with page <80> of the NEXT bank until it either reaches page <FF> of
the highest bank or finds a matching string. The matching of alphabetic
characters is case sensitive which means that characters entered in upper
case must be found in upper case and characters entered in lower case must be

Mister ED Application Pack
MED - 26

Copyright (c) 1986 MlSOSYS, Inc., All rights reserved
HEO - Memory Editor

found in lower case. If the search string cannot be fOilnd, the message,

String not found!

wil1 be displayed. At this point, the cursor location remains unchanged. If,
on the other hand, a r.iatching string of text is found In memory, the page
containing that string will be displayed. The cursor will be repositioned to
the first byte of the matching string and the status information will be
updated.

A way to find each occurrence of a search string is with the GO command,
<G>. Each depression of <G> will find the next occurrence of the search
string until no more matching strings can be located. At this point, the
"String not found!" message as noted above will be displayed.

Saving the work page to memory [<S>J

If you wish to save the current contents of the work page to memory, you
may do so by depressing <S>. MED will first ensure that you actually had
Intended to save the work buffer by prompting you with the query,

Save?

If you wish to proceed with the save operation, just depress the <ENTER> key.
Any other entry except <EXPORT> will cancel the pending request. You can
terminate M£0 without saving the work buffer and enter the export mode of
PRO-NTO by depressing <CLEAR RIGHT ARROW>. The result will be the same as if
you invoked <EXPORT> after_reque~ti~9_an exit fro~ MED (vi~ ~he <X> command).
Thus, please refer to the d1scuss1off· in the section on exiting from MEO for
the behaviour after such an <EXPORT> request.

After you save the work buffer (or cancel the request), MED is expecting
the entry of another command.

Exiting from MEO (<X>J

When you have completed your edits and wish to exit MED, simply depress
the <X> command. MEO will first ensure that you actually had intended to
terminate the application by prompting you with the query,

Exit?

If you want MED to terminate, just depress the <ENTER> key. Any other entry
except <EXPORT> will cancel the pending request. If you wish to export the
screen (or a portion of it) back to the interrupted program, depress <EXPORT>
which is the <CLEAR RIGHT ARROW> key combination. MEO wi 11 then enter the
export mode. Don't forget that if you abort the export mode by depressing the
<BREAK> key, PRO-NTO will return to the pr·eviously interrupted program as if
export had not been invoked.

Mister ED Application Pack
MED - 27

Copyright (cl 1986 MISDSVS, Inc., All r.ights reserved
MED - Memory Editor

There are two ways of controlling what PRO-NTO does at the end of each
exported line depending on how you mark the closure of the rectangle. If you
close the rectangle via the <ENTER> key, a carriage return will be added to
the "input" at the end of each marked line. This carriage return will be
appended regardless of whether the marked rectangle is one or more lines. If
the rectangle is closed by the depression of <SHIFT ENTER>, then the line is
input from the beginning mark to the ending mark in a continuous stream; no
carriage returns are added by PRO-NTO.

The rectangle is defined by the two points making up its northwest to
southeast diagonal. These two points may be marked in the following manner:

1. Position the cursor to the upper left corner of the
rectangle which will contain the information. The
four arrow keys, <LEFT>, <RIGHT>, <UP>, and <DOWN>,
will move the cursor around the screen.

2. Depress <CONTROL> to mark the beginning of the
rectangle block. The character under the cursor
will be replaced on the screen with a left square
bracket which indicates the marked position. Don't
worry about the bracket displayed; the correct
character will be provided as input.

3. Position the cursor to the lower right corner of this
rectangle again using the four arrow keys. This
position may be on the same display row as the
beginning mark.

4. Depress the <ENTER> or <SHIFT ENTER> key to mark
the end of the marked block. This now defines the
rectangle. The export will commence. The export
function may be aborted anytime prior to marking the
end of the rectangular block simply by depressing
the <BREAK> key.

Mister ED Application Pack
MEO~ 28

Copyright Cc) 1986 M!SOSYS, Inc •• All rights reserved
REGENBU - BRINGUP Maintenance Utility

REGENBU Utility

The REGENBU/BAS program was written to be used as a maintenance tool for
the BRINGUP/APP application supplied with PRO-NTO. 8RINGUP itself provides
facilities for removing unneeded entries from the data file; however, the

. action of removing an entry does not shrink the file. It merely deactivates
the activity slot so it can be used for another ADO. Thus, the operation of
BRING ensures that the BR!NGUP/OAT file will always be as large as the
largest number of active activities ever stored. This may not prove practical
in some cases. The REGENBU utility can remedy the problem of a maintaining a
large BRINGUP/OAT file which is storing few active activities.

The "REGENBU/BAS" program is written in BASIC. It is adapted from the
BRINGUP/BAS program 1isted in the PRO-NTO manual. REGENBU/BAS operates by
reading the BRINGUP/DAT file and creating a new file called ACTIVE/OAT which
contains only active activity records from the old file. If you ever need to
shrink your BRINGUP/DAT file after removing a number of deleted records, you
can run this program from BASIC.

The steps to "regenerate" your BR!NGUP/OAT file using REGENBU/BAS are as
fo11ows:

1. Invoke the program via BASIC REGENBU/BAS

2. After its operation, rename your existing BRINGUP/DAT file to some
archival name such as "8Ul20685/DAT".

3. Rename the "ACTIVE/DAT" file to "BR!NGUP/DAT".

After confirmation that the new data ·file is correct, you can archive the old
file to some archive diskette and remove it from your working disk.

Mister ED Application Pack
REGENBU - 29

Copyright Cc) 1986 MISOSYS, Inc., A 11 rights reserved
REGENBU - BRINGUP Maintenance Utility

This page intentionally left blank

Mister ED Application Pack
REGENBU - 30

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
T£0 - ASCII Text Editor

TED Application

The TED application is a .full screen •quick" text editor with typical
word-processing type features (fOtJr-directional cursor movement; two-direc­
tional scrolling; text insertion and overstrike; string search and replace;
block copy, delete, and move; directional d11lete; large text buffer; etc);
however. TED was not designed to be a full featured word processor. Because
of the limited space available for running PRO-NTO applications, some com­
promises were made in the inst a 1lation of features. Prompting and error
messages were necessarily made brief to leave the maximum amount of space
available for programming editing functions. In spite of our excellent pro­
gramming efforts, you may not find every editing function you would like to
see in a text editor; however, we have done our best in squeezing in as many
functions as we could to make TED a useful text editor for the purpose to
which TED was targeted. TEO was destgnecl for you to be able to rapidly enter
a full-screen text editing environment while you are running some other pro­
gram. We believe that we have met that goal. TED, of course, runs under
PRO-NTO - the windowing application manager from MISOSYS!

TED incorporates some pretty sophisticated memory management techniques
in providing you with a text buffer which can hold up to 30 thousand charac­
ters of text. However, TED cannot pull a rabbit out of a hat. In order to
utilize TED, you must have one 32K external bank of RAM free for its use. TEO
will search for a free RAM bank out of the possible 31 banks available when
your machine is equipped with a DOS supported memory add-on board. If you are
using a 128-K machine, you will have a free memory bank after PRO-NTO is
installed unless you are using it for a MemOISK or unless the program which
you interrupt to invoke TED has already claimed the available bank. TED uses
this external memory bank to swap the contents of the user address space
(starting from 3000H). On exit frott(TED, it's text buffer is again swapped
with the original contents of the user address space which was saved in the
external memory. Thus, you can re-capture the contents of the text buffer
after you have terminated TED by gaining access to the memory bank which TED
had used. This is discussed in the section on text recovery with the OOPS
application.

For its small size, TED boasts an impressive list of features:

- Editing window: 22 lines of 80 characters each; 30K text buffer.
- Text entry modes: overstrike mode, insert mode.
- Word wraps at end of line; not word bounce.
- Text delete modes: char, block, to eol, to bol, to top, to bottom.
- Cursor movement: left, right, up, down, top, bottom, bol, eol.
- String search (23 character string).
- String search and replace (23 character string).
- Scroll up, scroll down, page up, page down.
- Block modes: mark begin, mark end, copy, delete, and move.
- Load text from a disk file; Concatenate at current end of text.
- File text to disk; File extension default (/TXT).
- User definable command key set (via alterin9 with FED).
- User definable overstrike/insert cursors (via altering with FED).

Mister ED Application Pack
TED - 31

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
TED - ASCII Text Editor

Sumary of editing coamands

The following command sullll1ary is presented for your use. These are the
command keys and their functions as supplied by TEO. If you choose to alter
any of the command keystrokes, please make note of JOUr changes. Once you
become f amil i ar with the operation of TEO, this sec ti on may be a 11 you need
to refer to from time to time to jog your memory. Here are TED's cOl!lllands.

Key Entry Function

<·A> Toggle overstrike/insert modes
<•B> Specify BLOCK •••
<.O> Specify DELETE
<•F> FILE the text buffer to disk
<·G> GO find the next search string match
<•H> Same as the <LEFT ARROW> key
<.!> Same as the <RIGHT ARROW> key
<.J> Same as the <DOWN ARROW> key
<.K> Same as the <UP ARROW> key
<·L> LOAD a text file into the buffer
<•M> Silll1e as the <ENTER> key
<·N> Go to the NEXT video page
<·R> REPLACE searched string with new string
<·s> SEARCH for a string
<·u> Go UP to the previous video page

<CLEAR SHIFT=> EXIT the text editor
<LEFT ARROW> Move the cursor one position left
<RIGHT ARROW> Move the cursor one position right
<DOWN ARROW> Move the cursor one position down
<UP ARROW> Move the cursor one position up
<SHIFT LEFT> Move the cursor to the beginning of the line
<SHIFT RIGHT> Move the cursor to the end of the line
<SHIFT DOWN> Move the cursor to the end of the text
<SHIFT UP> Move the cursor to the beginning of the text
<CLEAR LEFT> Import text from previous screen

Invoking TED

TED is invoked like any other application .supplied with PRO-NTO. When
you invoke the TEO application, it will request PRO-NTO to open a full-screen
(80x24) window. If a window cannot be opened, a short beep will sound from
your computer's internal speaker and TEO will terminate. This happens when
you have exceeded the maximum number of windows that can be open at one time
which is a rare instance. When the window is opened, the video screen will
clear and TEO wi 11 search for a free extern a 1 memory bank. If one is not
available, a short beep will sound from your computer's internal speaker and
TED will terminate. You can differentiate between the two condi- tions which
cause an immediate "beep" and termination by noting whether or not the screen
cleared. Remember, if a window is not available, the screen wi11 not clear;
H a memory bank is not available, the screen will have been cleared.

Mister ED Application Pack
TED - 32

Copyright (c) 1986 MISOSYS, Im:., All rights reserved
TEO - ASCII Text Editor

Once TEO successfully .completes the first two steps, it will display a
,welcome message on the 24th line of the video screen. This display line will
also be used for the display of status, prompting, and error messages. TEO
displays three rlifferent types of messages during its operation. £rror mes­
sages are indicated by a terminating exclamation point, "! •. Queries Which
need a response are indicated by a terminating question mark, "?". Informa­
tive messages use no special character for their termination. Thus, "Marker!"
is an error, "String?" is a query, and "Block" is information.

The first twenty two lines of the video screen are used as a display
window for the text file under edit. This text area is separated from the
status display line by a horizontal line drawn with the underbar character.

Throughout this documentation, keystrokes are denoted by being enclosed
in angle brackets. Most of TED's commands are entered with the control key
(labeled <CTRL>). Some use the <CLEAR> key, instead. Throughout this docu­
mentation, the control key will be noted by the caret character, .. - •• Thus,
for example, the "block" command will be denoted as <-6>.

Text entry modes

TEO will accept only displayable ASCII characters in the range 20H
through 7FH for text entry. You can ascertain which characters this repre­
sents by displaying the machine's character set with the CHARSET application
which was provided with PRO-NTO. Any other character value will be interpre­
ted as a command entry. If it matches a value in the command table, that
command will be invoked; otherwise, the entry will be ignored.

TED operates in two text entry-~modes: overstrike and insert. The initial
mode established when TEO is first invoked is the "overstrike" mode. TEO can
be modified to initially enter the "insert" mode, if you so desire, by
changing the value of a single byte in the application file itself. The
method of acc~nplishing this is explained in the section covering alterations
to TED.

While TED is in "overstrike" mode, it wi 11 use an underbar as the cursor
character (character value 5FH as displayed by CHARSET). When you toggle to
"insert" mode, the cursor is changed to a fu 11 graphics block (character
value BFH). You toggle from one mode to the other via the <.A> command.

When TEO is in "overstrike" mode, any accept ab le text entry typed char­
acter is written over the character whtch appears under the blinking cursor.
You can overstrike a newline character (i.e. <ENTER>, which is displayed as
character value 84H - see CHARSET}. You can also overstrike either a "begin"
block marker (character value B7H) or an "end" block marker (character value
BBH}. You can be in overstrike mode when you come to the end of the text (or
starting from an empty text buffer, for that matter) and still be able to
enter text in this mode.

Mister ED Application Pack
TED - 33

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
TEO - ASCII Text Editor

When you sw1 tch to ninsert" mode, anytime you enter an accept ab le text
entry character, the entire text will be pushed down one position starting
from the character under the cursor to make room for the inserted character.
The video screen wi 11 be constantly updated as text is inserted.

The text entry mode is only changed via the <·A> command. Going into
"delete" mode does not change the mode of text entry.

Internally, TED uses a NULL character (character value OOH) to indicate
the terminating position of the text buffer. Throughout this documentation,
the word "NULL" denotes this facility.

Exiting from TED

It is easy to exit TEO and return to the program which was interrupted
to invoke TEO. The <CLEAR SHIFT=> command tells TEO you wish to exit. If the
text buffer is empty, TED will immediately terminate. However, if there is
any text in the buffer, you are provided an opportunity to retract your
request. TED will display the prompt message,

Sure?

If you wish to exit TED, all you need do is depress the <ENTER> key and TED"
will terminate. If you wish to EXPORT any portion of the screen contents back
to the previously interrupted program, depress PRO-NTO's EXPORT command,
<CLEAR RIGHT ARROW>. This is the only point during TED'S operation at which
the EXPORT facility may be requested. Any other keystroke entered in response
to the "Sure?" prompt wi 1 l be interpreted as a retraction of the EXIT
request.

If you inadvertantly exit TED and wish you hadn't because you forgot to
save the text, you may be in luck. See the section on text recovery with the
OOPS application.

Loading a text file

The <.L> c011111and is used to load a text file into the text buffer area.
When you depress <.L>, you will be prompted for the n~ne of the file via the
prompt message,

F11espec

If the file you wish to load has an extension of "/TXT", you do not have to
enter the extension. If the extension is omited from your entry, "/TXT" will
be automatically provided.

The LOAD command will not automatically clear any text remaining in the
text buffer prior to the LOAD. This means that the new text from the disk
file will be concatenated to the old text in the editing buffer. The new text

Mister ED Application Pack
TED - 34

Copyright (c) 1986 MISOSYS, Inc., All rights reserYed
1'£0 - ASCII Text Editor

1s not inserted at the cursor position but rather 1s tppended to the end of
the current text. lf you wish to load the new ff le over the old text, simply
invoke the conmand sequence, <CLEAR UP ARROW> followed by <·o> then <CLEAR
DOWN ARROW>. This will delete the entire text buffer. Alternatlvely, you can
invoke a <CLEAR DOWN ARROW> then follow it with a <•o> then <CLEAR UP ARROW>.
loth sequences will delete a11 of the text in the buffer. You can then load
1n the new ff le.

If the file is too large to fit into the available text buffer, the
error message,

No room

will be displayed and no text w1 ll be loaded. If any disk read error is en­
countered while reading the text file into the text buffer, the message,

I/0 error!

wtll be displayed. The text which was loaded up to the point of encountering
the error will be retained in the text buffer •

. Entering text

Entering text is easy, you just type away. If you already have text in
the buffer and wish to enter new text at the end, just move the cursor to the
bottom (via the <CLEAR DOWN ARROW> key), then type in your text. If you wish
to enter new text at some other point, just position the cursor, toggle to
the "insert• mode, then type away. T_ED will stay in "insert• IIIOde until ex­
plicitly toggled back to "overstri~• mode.

As you are entering text, any word which is too long to fit at the end
of a video line will be split at the 80th column and continued onto the next
line. These "long words" are not automatically bounced onto the subsequent
line, as is the case with the typical "word processor".

TED also provides you with other facilities for editing text. You can
perform a "cut and paste" operation by first marking a block of text and then
moving it to Where you want the marked block positioned. You can "search and
replace" a find text string of up to 23 characters with a replacement text
string of up to 23 characters. Sorry, but due to space restrictions, the
search is case sensitive.

Don't forget, you can nearly always invoke another PRO-NTO application
from TED. This means that you.can use the EXPORT facility from the invoked
application to pass data back to TED as text input. TED permits the use of
PRO-NTD's IMPORT facility during text entry and during the input of
search/replace strings and file specifications. Thus, you can directly IMPORT
text from the interrupted program's screen into TED's text buffer. Dn the
other hand, you could also interrupt a program and save the screen image into
a disk file with DOSAVE (or YEO) and then load that file into TED's text

Mister ED Application Pack
TED - 35

Copyright (cl 1986 MlSOSYS, Inc., A 11 rights reserved
TED - ASCU Text Editor

buffer. A little ingenuity can work wonders.

Cursor positioning manipulations

In all cases concerning cursor manipulation, the last position of a line
h interpreted according to the following priority:

1. the NULL which is used by TED to indicate the end of the text;

2. a new line character, the <ENTER>;

3. or the 80th character on the line.

This means that when TED needs to determine what is the last displayed char­
acter position on a line, it will first check f.or case 1. Failing that, it
will check for case 2. Failing that, the last character position will be the
80th column, by default. TED provides you with many commands to position the
cursor and/or display different portions of your text. The ARROW keys are the
primary tools to move the cursor. These keys will be interpreted as cursor
movement requests unless TED is in the DELETE or BLOCK modes.

The <LEFT ARROW> moves the cursor one position to the left for each
depression (or repeated key, if held down). When the cursor is positioned -
over the first character of a line, a <LEFT ARROW> request will move the
cursor to the last character position of the previous line.

The <RIGHT ARROW> request will move the cursor one position to the
right. When the cursor is positioned over either a new line character or the
80th character position on the line, a <RIGHT ARROW> request will move the
cursor to the first column of the succeeding line. TED wi 11 not advance the
cursor past the terminating NULL.

The <DOWN ARROW> request will move the cursor to the succeeding line at
the same column position. However, if that position would be beyond the last
position of that line, the cursor will be repositioned to the last position
of that line. If the line position of the cursor had been the last line of
the text portion displayed on the video screen, the text will be scrolled up
one row to make the succeeding line visible. TED will not advance the cursor
past the terminating NULL.

The <UP ARROW> request will move the cursor to the preceeding line at
the same column position. However, if that position would be beyond the last
position of that line, the cursor will be repositioned to the last position
of that line. If the line position of the cursor had been the first line of
the text portion displayed on the video screen, the text will be scrolled
down one row to make the preceeding line visible. Obviously, if the first
line displayed was the first line of your text, the <UP ARROW> request to
change the cursor position will be ignored.

Mister ED Application Pack
TED - 36

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
TEO - ASCII Text £ditor

The <SHIFT LEFT ARROW> re(luest will move the cursor to the first posi­
tion of the current 1 ine, The <SHIFT RIGHT ARROW> re(luest · wi J 1 move the
cursor to the last position of the current line. You can position the cursor
to the flrst position of the text buffer by a <SHIFT UP ARROW> request. If
that text position had not been on the video display, the screen will be re­
freshed so that the top of the text wi11 be dhplayed. starting from the top

, of the video display. Finally, the <SHIFT 00\o/N ARROW> will refresh the screen
so th.at the line whi.ch contains the terminating NULL will be displayed at the
top of the video screen and the cursor wi 11 be positioned over the NULL.

The page up, <-u>, command will refresh the video screen so that the new
first displayed line is twenty one lines previous to the current first dis­
played line. That also means the new last displayed line was the first line
displayed prior to the page up request. This all assumes that there are at
least twenty one lines preceeding the top line. If there are fewer than
twenty one 1ines, the result will be as if you had invoked a TOP command,
<SHIFT UP ARROW>.

The page next, <-N>, request will refresh the video screen so that the
new first line displayed is the last line of the current displayed text. If
the video display has fewer than 22 lines of text displayed, the page next
request will be ignored.

After either a page up or page next request, the new cursor position
will be the home position of the screen (i.e. row 0, column 0).

Text deletion

TEO provides five forms of te-xt' deletion in addition to the block dele­
tion discussed later. To delete the single character which appears under the
cursor, invoke the delete command via <·o>. This action will get rid of the
character and al 1 text which succeeded that character wi 11 be pu 1 led back one
position. The <·o> command also puts you into DELETE mode which is made ap­
parent by the display of the word,

Delete

in the status line. The DELETE mode is active for only the next keyboard
entry. There are only four subcommands associated with the DELETE mode:
delete to beginning of line {boll, delete to end of line (eol), delete to
top, and delete to bottom. These subcommands are specified by the cursor
movement keys associated with cursor positioning. To refresh your memory, use
the following table:

Deletion desired COllllland sequence

delete to bo 1
delete to eol
delete to top
delete to bottom

<-o> then <SHIFT LEFT ARROW>
<-o> then <SHIFT RIGHT ARROW>
<-D> then <SHIFT- UP ARROW>
<·o> then <SHIFT DOWN ARROW>

Mister ED Application Pack
TEO - 37

Copyright Cc) 1986 Misbsvs. tnc •• A11 rights reserved
TEO - ASCII Text Editor

. Aft11r the <·o> is requested. .the character now under the cursor is the char­
acter which was to the right of the deleted character. Since fo the case of
delete to bol and delete to top, you are deleting text which 1s in front of
the cursor, you really don't want to delete the character Which is under the
cursor after the <·o>. Well, you don't have to worry about that because those
two subc011111ands properly backup one position before continuing the deletion.

By the •ay. TEO considers all four of these subcOllllland deletions as
severe; thus, it will issue the •sure?" query and expect the entry of <ENTER>
in order to carry out the deletion.

Blodt operations

The BLOCK c011111and, <·B>, has five subcommands: Begin, End, Copy, Delete,
and Move. These subc011111ands are specified by entering the first letter of the
subcommand word (, <E>, <C>, <D>, or <M>). The entry may be in either up­
per or lower case. Note that these subc011111ands are NOT control key combina­
tions but normal alphabetic single-key entries. When you invoke the BLOCK
c011111and, the word,

Block

will be displayed in the status line.

A block deletion request is considered by TED to be severe enough to
warrant double checking your request before going ahead and performing the
deletion. Thus, the operation of deleting a block was designed to be a
BLOCK-Delete function sequence (<.B>, <D>) rather than a OELETE-BLOCK func­
tion sequence (<.D>, <·B>) to avoid the single character deletion which
always occurs with the DELETE command.

Anytime you need to deal with a block; say to copy it, move it, or
delete it, you have to first mark it. The beginning and ending positions of a
block are marked by first positioning the cursor over the first character of
the block and then entering the two c011111and sequence, <·B> followed by .
This is followed up be positioning the cursor over the character immediately
following the last character of the block and then entering the two command
sequence, <·B> followed by <E>. The beginning position will be indicated on
the display by a "begin" marker which is inserted by TED into the text. The
marker is displayed as a graphic left bracket (character value B7H). The
ending position will be indicated on the display by an "end" marker which is
also inserted by TED into the text. The marker is displayed as a graphic
right bracket (character value BBH). These markers occupy ordinary text
positions; thus they may be deleted or overstriked. Any remaining in the text
buffer at the time a FILE c011111and is performed will be written to the disk
file just as if they were ordinary text characters [internally, TEO uses the
value FEH for a "begin" marker and the value FFH for an •end" marker].

Although you can mark as many blocks as your heart desires, TED provides
no way to differentiate between marked blocks in other than the BLOCK-DELETE

Mister ED Application Pack
TED - 38

Copyright (cl 1986 MISOSYS, Inc., All rights reserved
TEO - ASCII Text Editor

function. for· copying and moving blocks, the first block marked in the text
is the one chosen for copying or moving. On the other hand, a BLOCK-DELETE
request requires that the cursor be positioned within the interior of the
marked block which is to be deleted.

To COPY the first marked block in the text to some other position,
simply mark the beginning and end of the block as discussed above, move the
cursor to the position in the text where you want the marked block copied
Into, then invoke the block copy command via the sequence, <-B> followed by
<e>. Note that the block which wi 11 be copied is the first marked block found
in the text buffer. A few things could go wrong with your request. If TED can
find no properly marked block, it will display the error message,

Marker!

and terminate the block mode. Another error which could
position you wish the block copied into happens to be in
block itself! Such a block copy can not occur. You will
by a display of the error message,

Cursor!

occur is when the
the interior of the
be informed of this

The successful block copy operation only copies the marked text; the
markers are not copied as well. In fact, the marked text remains in its
original position relative to the text which surrounds it. The cursor posi­
tion relative to the text will be unchanged after the block is copied; how­
ever, the screen may be refreshed and the physical location of the cursor on
the screen may be different.

A block of text may be MOVED ffom one position to another by a command
sequence similar to the block copy. In this case, simply mark the beginning
and end of the block as discussed above, move the cursor to the position in
the text where you want the marked block moved to, then invoke the block MOVE
command via the sequence, <·s> followed by <M>. Again note that the block
which will be moved is the first marked block found in the text buffer. This
operation is essentially one of copying and automatic deleting without the
double check prompt. As in the case of the block copy, the same errors are
possible with similar diagnostic messages when things are not as they should
be. With the block move command, the new cursor position will be the new
position of the moved block. The screen may be refreshed and the physical
cursor position altered to accomodate this request.

The last block operation is deletion. Similar to the above functions,
you first must mark the block's beginning and ending positions. You must then
position the cursor to the interior of the marked block and invoke the com­
mand with the sequence, <-8> followed by <O>. If TED is confident that the
cursor position is interior to a marked block, it will double check your re­
quest by issuing the prompt,

Sure?

Mister ED Application Pack
TED - 39

Copyright <c> 1986 NISOSYS, l1te., All rights rttserYed
TED - ASCII Text Editor

lt is necessary to depress <ENTER> to affirm your intentions. Any other
character entry. (including a •Y•) wi 11 cause TED to ignore the block delete
request.

The same errors as for copy and IIIOYe can occur; however. the messages
.IIIY not be for the same reasons. When a b1ock delete is requested, TED will
first look for an ending block 111arker starttng from the cursor pos1t1on. If
none 1 s found, the error' d1 sp 1 ayed wi 11 be •Marker! •. This ooesn' t mean
necessarily that a properly marked block 1s llliss1ng. On the other hand, if an
ending Nrker is found past the cursor position, TED next scans forward for a
beginning block marker. A •Marker!• error will also be posted if none 1s
found, If a marker is found but is also past the cursor position. a •Cursor!•
error will be posted. The remaining situation 1s the correct one; the cursor
is positioned interior to the marked block and that block will be deleted.
The screen will be refreshed and the cursor will be moved to the relative
position of the block which was deleted.

Filing away your text to a disk file

The <·F> command is used to FILE the contents of the text buffer area
into a disk file. When you depress <r>, you will be prompted for the name of
the file via the query message,

Filespec?

If the file specification you wish to use has an extension of "/TXT", you do
not have to enter the extension. If the extension is omited from your entry,
"/TXT" will be automatically provided.

The FILE command will save the entire text buffer, excluding the termi­
nating NULL but including any block markers, into the disk file identified by
your input. If any disk write error is encountered while saving the text
buffer into the disk file, the message,

1/0 error!

will be displayed. In any case, the text buffer is left undisturbed.

Text search

TEO provides the SEARCH command to scan the text buffer for a specified
string of characters. You specify the search by invoking the command with
<·s>. TED then prompts you for the search string with the query message,

String?

You can enter up to 23 characters to be used for the search string. Terminate
your search string with an <ENTER> (the <ENTER> character code is not in­
cluded as one of the 23 characters). TEO will then look for ·the string

Mister ED Application Pack
TED - 40

Copyright (c) 1986 MISOSYS, Im:., All rights reserved
TEO - ASCH Text Editor

starting ¥titli the first character immediately following the cursor. The
matching is case sensitive which means that characters entered in upper case
must be found in upper case .and characters entered in lower case must be
found in lower case. If the search string cannot be found, the message,

·(an't!

wn l be displayed. At this point, the cursor location remains unchanged, If,
on the other hand, a matching string of text is found in the text buffer, lt
wl 11 be displayed. The display window wi 11 be redrawn starting with the line
which contains that string. The cursor wil 1 be repositioned to the first
character of the matching string.

If you enter a null string in response to the "String?" query, then the
search will proceed with the last entered non-null search string, providing
one was ava1 lab le. A null string is, of course, entered by responding to the
"String?" query with an immediate <ENTER> keystroke. Using this procedure,
you can advance the cursor to each occurrence of the search string in
question.

Another way to find each occurrence of a search string is with the GO
command, <'G>. Each depression of <'G> is identical to the sequence, <'S>
followed by <ENTER>.

Text search and replace

TED also provides the capabi1ity of replacing a text string matching up
with the search string with a different string - the replacement string. When
the REPLACE command is invoked via-<''R>, the query message,

String?

will be displayed. Although the message is the same as for SEARCH, this query
is asking you for the replacement character string. You can enter up to 23
characters to be used for the replacement string. Terminate your string with
an <ENTER> {the <ENTER> character code is not included as one of the 23
characters). TEO will then look for the currently pending SEARCH string
starting with the first character IMMEDIATELY under the cursor. If the SEARCH
string cannot be found, the message.

Can't!

will be displayed. At this point, the cursor location remains unchanged. If,
on the other hand, a matching string of text is found in the text buffer, it
will be replaced with the REPLACE string. The display window will be redrawn
starting with the line which contained the string which was replaced. The
cursor will be repositioned to the first character immediately following the
replacement string.

Mister EO Application Pack
TEO - 41

Copyright Cc) 1986 MISt>SYS, Inc., All rights reserved
TED - ASCII Text Editor

If you wish to replace the next occurrence of text which matches up with
the SEARCH string with that same REPLACEMENT string, all YoU need do is in­
voke the REPLACE command, <-R> followed by a NULL replacement string. A null
string is, of course, entered by responding to the "String?" query with an
immediate <ENTER> keystroke. Since the cursor is repositioned after a
replacement to the first character immediately following the replacement
string, your subsequent replacements will not get you into trouble if the
SEARCH string happened to be a substring of the REPLACEMENT string!

The GO command, <-G>, sti l1 functions to find the next occurrence of the
SEARCH string. Knowing this, if the next occurrence of the search string is
beyond the text currently displayed on the screen and you wish to confirm its
replacement, simply GO to the next occurrence then REPLACE, as necessary.

Printing text

TEO provides no facility for printing your text file. The most reason­
able way of accomodating that function is with the LIST command provided as
part of your DOS. Remember, the LI ST command can be invoked vi a the PRO-NTO
LlBEXEC facility.

Text recovery with OOPS

There may be times when you exit the TED application inadvertantly
without filing the edited text to a disk file. Some full-featured word pro­
cessors permit you to re-enter their editor with an asterisk parameter which
generally denotes "reclaim the text buffer". Since TED is invoked via a
PRO-NTO function key, there is no way to specify such a parameter. However,
to provide this feature, another application is included called, OOPS. The
OOPS application is identical to TED with one important difference. Instead
of automatically clearing the text buffer as TED does, OOPS will display
whatever is in the external memory bank which it obtains. Thus, if you have
not altered any of the information in that memory bank, you can always go
back and recapture it with OOPS.

One cautionary note. Since a11 of the text pointers normally established
by TED will not be initialized when invoking OOPS, it will be necessary to
scroll through the text unti 1 reaching its last character prior to doing any
other operation. This may also be performed using NEXT PAGE.

Mister ED Application Pack
TEO - 42

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
TED - ASCII Text Editor

Alterations to TED

You can alter certain characteristics of TED via direct modification
using the File EDitor, FED. FED is one of the editors included with this
package of applications. All of the following "Byte" references denote a
position within the sector numbered "l • of the TED/APP program file. Codes in
the tables below are the hexadecimal values provided by TED.

The cursor characters may be changed in the following positions:

Byte Code Cursor

02 <SF> overstrike
03 <BF> insert

The editing command keys may also be changed to suit your preference.
Please note that when making any changes, avoid conflicts in keystrokes. For
example, a <CTRL-X> and a <SHIFT LEFT ARROW> both generate the same code,
<18>. Thus, if you choose to utilize <CTRL-X>, then you can't use <SHIFT LEFT
ARROW>. You also cannot use any of the FUNCTION keys (Fl, F2, F3) for TEO
commands as PRO-NTO is in an active mode during TEO' s operation and therefore
PRO-NTO has control over the function keys.

Byte Code Command

---------04 <08> LEFT
07 <09> RIGHT
DA <OA> DOWN
OD <OB> UP
10 <OD> ENTER . ./

13 <18> BOL
16 <19> EOL
19 <lA> END
lC <1B> TOP
lF <01> INSERT
22 <02> BLOCK
25 <04> DELETE
28 <06> FILE
28 <07> GO
2E <OC> LOAD
31 <OE> NEXT page
34 <12> REPLACE
37 <13> SEARCH
3A <15> UP page
3D <BD> EXIT

Finally, it was noted that TED reverts to overstrike mode when it is
first invoked. This can be changed to insert mode by the following change:

Byte: B8 Overstrike Code: <81> · Insert Code: <80>

Mister ED Application Pack
TEO - 43

Cqpyright (c) 1986 MISUSYS, Inc., A 11 rights reserved
U:O - ASCII Text Editor

This page intentionally left blank

Mister ED Application Pack
TED - 44

Copyright (c) 1986 MISOSYS, Inc., A.11 rights reserved
V£D -.Video Display Editor

VED Application

The VEO application will allow you to.edit the 80 colum by 24 row video
screen display. You can edit the screen image existing at the time VEO is
fo.voked; save the current image to a screen image disk file; or load a screen
image disk fi Ice into the video screen. The altered video image or a portion
of that image may then be exported back . into thce program which you were run­
ning when VEO was invoked.

When you invoke the VED application, tt will request PRO-NTO to open a
24 .row by 80 column window. If the window cannot be opened, a short beep will
sound from your COl!lplJter' s internal speaker and VED wi 11 terminate. When the
window is opened, VED will restore the previous screen image to the window
and place you into the EDIT mode. You will see a momentary flash of the
screen.

The EDIT mode enables you to alter the text which appears on the screen.
When you are finished editing, there are two ways of terminating the edit
mode. One way is to enter <CONTROL-F> to "finish" the edits and go into the
EXPORT mode. The other way is the depress the <BREAK> key which will abort
the editing and return you to the previously running program.

Su111nary of VEO's editing conmands

Keystroke Editing operation

<LEFT ARROW>
<RIGHT ARROW>
<DOWN ARROW>
<UP ARROW>
<SHIFT><LEFT ARROW>
<SHIFT><RIGHT ARROW>
<SHIFT><DOWN ARROW>
<SHIFT><UP ARROW>
<CONTROL-A>
<CONTROL-B>
<CONTROL-C>

< CONTROL-0>

<CONTROL-E>
<CONTROL-F >
<CONTROL-L>
<CONTROL-$>

<CONTROL-T>
<BREAK>
<ENTER>

<CLEAR><RIGHT ARROW>

Move the cursor left one column.
Move t~e cursor one colunm to the right.
Move·-1:'.he cursor down one line.
Move the cursor up one line.
Move to the start of the line.
Move the cursor to the last column.
Move the cursor to the last line.
Move the cursor to the top line.
Add a space and push rest of line right.
Mark the beginning of a cut & paste block.
Concatenate the next line to overstrike
the position of the cursor.
Delete the character under the cursor and
move the trailing portion of the line left.
Mark the end of a cut & paste block.
Write the screen contents to a disk file.
Load the screen from a disk file.
Split this line at the cursor and move
the trailing text to a NEW next line.
Designate where to paste the marked block.
Cancel the changes and exit.
Move the cursor to the beginning of the
next line.
Terminate edits and enter EXPORT mode.

Mister ED Application Pack
VED - 45

Copyright (c) 1986 MISbsvs. Inc., All rights reserved
YEO - Video Display Editor

Text entry

A blinking cursor which appears as a plus-minus sign (a character value
of 7fH - see CHARSET) wi 11 appear in the first character position of the text
area. All text is entered in what is termed overstrike mode. Any ASCII
non-contro 1 character wi 11 overtype the character beneath the cursor and
cause the cursor to advance by one position.

You can insert a character by first moving the cursor to the insertion
position and then depressing <CONTROL-A> (for "add" of a character). The
characters extending from that position through to the end of the line will
be shifted right and a space wi 11 be inserted. You can then overstrike the
Space with the desired character.

Text deletion

To delete a character, depress <CONTROL-D> (for "delete" a character).
The character at the cursor position will be deleted and all trailing char­
acters in the line will be shifted left to "take up the slack".

Combining two text lines

The line concatenate operation invoked by <CONTROL-C> will overstrike
the characters from the cursor to the end of the line with the text which
appears on the next line. The entire next line wi 11 be deleted and all lines
to the bottom of the text will be bumped up by one line. If the next line is
longer than the character positions remaining, the "overflowed" characters
will be dropped. If you are aware that a concatenation of the next line will
overflow and you do not want this to happen, you may want to split the next
line into two pieces. See the split command, <CONTROL-S>.

Splitting a line into two lines

The line split operation invoked by <CONTROL-S> will divide up the cur­
rent line into two lines. This is done by first moving all lines following
the current line down by one line which opens up a blank line. Next, all of
the characters from the cursor through to the end of the current line are
shifted to the new blank line. The old last line of the text will be saved in
an overflow line buffer so that the next "concatenate" operation will pull it
back into the visible text area.

Cutting and pasting a block of text

The cut and paste facility allows you to move a designated portion of
text t,i another position on the screen. VED operates by cutting out the
markecl block and pasting it to the screen where you designate. The actual
phcr;rn,:,nt of the pasted text and the text impacted by the placement may be

Mister ED Application Pack
VED - 46

Copyright (c} 1986 MISOSYS, Inc., All rights reserved
VED - Video Display Editor

adjusted so as to not overwrite any text on the screen. In any case, the
relative positioning of the pasted text will be according to your specifi­
cation.

You mark the begin.ning character of the text block by first positioning
the cursor to appear over the first character of the block and then depress­
ing <COHTROL-B>. You will note the BEGIN marker by the appearance of a left
bracket "(" character blinking over the character which was at the cursor. If
a BEGIN marker was already on the screen at some other position, it will be
relocated to the current cursor position. If the current cursor position
already contained a BEGIN marker, it wil 1 be removed. The cursor wi 11 be
advanced by one position.

You mark the ending position of the text block by first positioning the
cursor to appear over the last character of the block and then depressing
<CONTROL-E>. You will note the END marker by the appearance of a right
bracket "]" character blinking over the character which was at the cursor. If
an END marker was already on the screen at some other position, it will be
relocated to the current cursor position. If the current cursor position
already contained an END marker, it will be removed. The cursor will be
advanced by one position.

Both the BEGIN and ENO markers may be repositioned at will. The marked
text constitutes all characters between and including the marked endpoints as
if the end of one row was connected to the beginning of the next row. The cut
and paste operation is invoked by depressing <CONTROL-T> after you have
positioned the cursor where the marked text is to be pasted. If the ENO
marker precedes the BEGIN marker or the PASTE position is interior to the
marked block, the pasting will not_~'.=, performed.

Since the result of this cut and paste facility may be hard to visu­
alize, the following two diagrams may be studied to see this behavior. Also,
it will be beneficial to try out the cut and paste operation on sample text.
Remember, if you exit VED via the <BREAK> key, nothing is disturbed.

I Case I I
I I
I I I ______________ I

I -..-,--,--~~B II
11 This 1s the marked block. It wi 11 actually get pasted 11
I l so that the text from "B" through "E" wi 11 appear 11
II ending at position "T". ~--~--II
11_~ _______________ .E This piece 11
11 of text moves up as the marked block leaves a ho 1 e. 11

I I -,,-----------------11 11 I
I I l ___________________ l

Mister ED Application Pack
VED - 47

Copyright (c) 1986 MISOSYS, Inc., All rights reserved
VEO • Video Display Editor

The "Case I• example illustrates the paste position after the marked
blotk. The positions "B" and "T" designate the endpoints of the text which is
disturbed. The text actually is rotated counter clockwise so that the marked
text immediately follows the text between the end of the marked position and
the paste position. Thus, the piece of text between "E+l" and •T" can be
conceptualized as the marked text to be pasted into position "8".

I Case f
I I i r·-•th,..,,..-s--.-t-ex_,t,--w-.l ""ll,,._,b_e_mo_v_e_,d,-,-to-a'"'"b-u"'"t-t'"'h-e-ne_w_p_o_s.,.lt,..i.-o_n __ l I
I I-of the marked block. Thus, "S-l" will be at the old JI
11 position "E". _________________ ll
II ______ B. 11
11 II
11 This piece of text is pasted so that "B" through "E" II
11 will be starting at position "T". fl
I l II

:: E--1:
I I
I I
I I

In "Case II", the marked text "B" through "E" wi 11 be pasted into the
position designated as "T"; however, the text from "T" through "B-1" wi 11 be
rotated to follow the new position of "E".

Saving the screen to a disk file

If you wish to save the current contents of the video screen to a disk
file, you may do so by depressing <CONTROL-F>. A small window will open up to
prompt you for the file specification. VED will save the contents of the
video screen as 24 lines of 80 characters; each line will be terminated by a
carriage return (the <ENTER> key code). This is the identical format used by
the DOSAVE and DOLOAO applications. After the screen is saved to disk, the
blinking cursor will reappear and you may continue your edits.

Loading the screen from a disk file

If you wish to load some other previously saved video screen from a disk
file, you may do so by depressing <CONTROL-L>. A small window will open up to
prompt you for the file specification. VED will load the contents of the fl le
into the video screen overwriting the previous image. The file must be a
video screen format file as generated by OOSAVE, VEO, or other application.
After the screen is loaded from disk, the blinking cursor wi 11 reappear and
you may continue your edits on this new image.

Mister ED Application Pack
VEO - 48

Copyright Cc) 1986 MISOSYS, Inc •• All rights reserved
YEO - Video Display Editor

Exiting from VED

When you have completed your edits and wish to export the screen (or a
portion of ltJ back to the interrupted program, depress <CLEAR RIGHT ARROW>.
VEO will then enter the EXPORT mode. Don't forget that if you abort the
editing by depressing the <BREAK> key, VEO will return to the previously
interrupted program as if VED had not been invoked.

There are two ways of controlling what !'RO-NTO does at the end of each
exported line depending on how you mark the closure of the rectangle. If you
close the rectangle via the <ENTER> key, a carrtage return wi 11 be added to
the "input" at the end of each marked line. This carriage return will be
appended regardless of whether the marked rectangle is one or more lines. If
the rectangle is closed by the depression of <SHIFT ENTER>, then the line is
input from the beginning mark to the ending mark in a continuous stream; no
carriage returns are added by PRO-NTO.

The rectangle is defined by the two points making up its northwest to
southeast diagonal. These two points may be marked in the following manner:

1. Position the cursor to the upper left corner of the
rectangle which will contain the information. The
four arrow keys, <LEFT>, <RIGHT>, <UP>, and <DOWN>,
will move the cursor around the screen.

2. Depress <CONTROL> to mark the beginning of the
rectangle block. The character under the cursor
wi 11 be replaced on the screen with a left square
bracket which indicates the marked position. Don't
worry about the bracket displayed; the correct
character will be provided as input.

3. Position the cursor to the lower right corner of this
rectangle again using the four arrow keys. This
position may be on the same display row as the
beginning mark.

4. Depress the <ENTER> or <SHIFT ENTER> key to mark
the end of the marked block. This now defines the
rectangle. The export will commence. The export
function may be aborted anytime prior to marking the
end of the rectangular block simply by depressing
the <BREAK> key.

Mister ED Application Pack
VED - 49

	00b.pdf
	00c.pdf
	00d.pdf
	01.pdf
	02b.pdf
	02c.pdf
	03b.pdf
	03d.pdf
	04b.pdf
	05b.pdf
	06.pdf
	06b.pdf
	07.pdf
	07b.pdf
	08.pdf
	08b.pdf
	09.pdf
	09b.pdf
	10.pdf
	11.pdf
	11b.pdf
	12.pdf
	12b.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	36.pdf
	37.pdf
	38.pdf
	39.pdf
	40bad.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	45.pdf
	46.pdf
	47.pdf
	48.pdf
	49.pdf

